Please wait a minute...
 
国土资源遥感  2010, Vol. 22 Issue (3): 36-40    DOI: 10.6046/gtzyyg.2010.03.08
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
 
结合雷达影像纹理特征的作物叶面积指数估测
高帅1,2, 牛铮1, 刘翔3, 吴朝阳1,2
1.遥感科学国家重点实验室,中国科学院遥感应用研究所,北京100101; 2.中国科学院研究生院,北京100049; 3. 北京东方泰坦科技股份有限公司,北京100083
The Estimation of Crop Leaf Area Index in Consideration of Texture Characteristics of SAR
GAO Shuai 1,2, NIU Zheng 1, LIU Xiang 3, WU Chao-yang 1,2
1.State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China; 3. Beijing Oriental TITAN Technology Co., Ltd, Beijing 100083, China
全文: PDF(751 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

研究了结合雷达影像纹理特征进行作物叶面积指数(LAI)估测的可行性,分析了作物LAI与多极化雷达纹理特征的相关性。将ENVISAT ASAR影像6种纹理特征与实测玉米的LAI进行相关分析发现,HH极化影像的灰度共生矩阵纹理特征与玉米LAI的相关性较VV极化的高; HH极化影像的对比度、异质性,VV极化影像的偏度、均质性等纹理特征与实测LAI均有较大的相关性。分别对两种极化影像雷达波散射强度及纹理特征与实测LAI进行多元回归分析,发现HH极化方式的相关系数达到0.68、VV极化的为0.87。说明结合纹理特征的雷达估测作物LAI方法具有一定的可行性。

 

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 北京山区植被覆被率遥感制图FCDMappingModel景观格局    
Abstract

The authors studied the feasibility of estimating Leaf Area Index (LAI) of the crop by using intensity and texture characteristics of SAR, and analyzed the texture characteristics of SAR which have relatively high correlation with LAI. In this study, six texture characteristics calculated from ENVISAT-ASAR image were selected and compared with measured LAI of the corn. The results show that the texture characteristics of HH polarization for gray level co-occurrence matrix have higher correlation with the LAI of corn than those of VV polarization. Dissimilarity of HH polarization and skewness and homogeneity of VV polarization are significantly related to LAI. In combination with backscattering coefficient, multiple regressions of two formulae were computed respectively, and the correlation coefficients are 0.68 for HH polarization and 0.87 for VV polarization. It is thus held that the methods discussed in this paper have potential application values in the estimation of the crop Leaf Area Index.

Key wordsMountain areas of Beijing    Vegetation coverage    Remote sensing mapping    FCD mapping model    Landscape pattern analysis
收稿日期: 2009-12-10      出版日期: 2010-09-20
: 

TP 79: S 127

 
基金资助:

国家重点基础研究发展计划项目(编号: 2007CB714406); 国家科技支撑计划项目(编号: 2008BAC34B03); 中国科学院知识创新工程青年人才领域前沿项目; 中国科学院遥感应用研究所遥感科学国家重点实验室资助项目; 欧盟项目CEOP-AEGIS(FP7-ENV-2007-1 Grant nr. 212921); 测绘遥感信息工程国家重点实验室资助项目(编号: 09R04)。

 

通讯作者: 高帅(1983-),男,博士研究生,研究方向为全球变化遥感。
引用本文:   
高帅, 牛铮, 刘翔, 吴朝阳.  
结合雷达影像纹理特征的作物叶面积指数估测[J]. 国土资源遥感, 2010, 22(3): 36-40.
GAO Shuai, NIU Zheng, LIU Xiang, WU Chao-Yang. The Estimation of Crop Leaf Area Index in Consideration of Texture Characteristics of SAR. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 36-40.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2010.03.08      或      https://www.gtzyyg.com/CN/Y2010/V22/I3/36

[1]Paloscia S. An Empirical Approach to Estimating Leaf Area Index from Multifrequency SAR Data[J].International Journal of Remote Sensing,1998,19(2):359-364.

[2]Inoue Y, Kurosu T, Maeno H, et al. Season-long Daily Measurements of Multifrequency (Ka, Ku, X, C, and L) and Full-polarization Backscatter Signatures over Paddy Rice Field and Their Relationship with Biological Variables[J]. Remote Sensing of Environment,2002,81(2):194-204.

[3]高帅,牛铮,刘晨洲.基于RADARSAT SAR估测热带人工林叶面积指数研究[J].国土资源遥感,2008(4):35-38.

[4]Ulaby F T, Allen C T, Eger III G, et al. Relating the Microwave Backscattering Coefficient to Leaf Area Index[J]. Remote Sensing of Environment,1984,14(1):113-133.

[5]Dente L, Satalino G, Mattia F, et al. Assimilation of Leaf Area Index Derived from ASAR and MERIS Data into CERES-Wheat Model to Map Wheat Yield[J]. Remote Sensing of Environment,2008,112(4):1395-1407.

[6]Dong P, Leblon B. Rock Unit Discrimination on Landsat TM, SIR-C and Radarsat Images Using Spectral and Textural Information[J]. International Journal of Remote Sensing,2004,25(18):3745-3768.

[7]Lu D, Batistella M, Moran E. Land-cover Classification in the Brazilian Amazon with the Integration of Landsat ETM+ and Radarsat Data[J]. International Journal of Remote Sensing,2007,28(24):5447-59.

[8]Champion I, Dubois-Fernandez P, Guyon D, et al. Radar Image Texture as A Function of Forest Stand Age[J]. International Journal of Remote Sensing,2008,29(6):1795-8000.

[9]Gonzalez R C, Wintz P A. Digital Image Processing[M]. Reading Mass: Addison-Wesley,1987.

[10]Haralick R M, Shanmuga K, Dinstein I. Textural Features for Image Classification[J]. IEEE Transactions on Systems Man and Cybernetics,1973,SMC3(6):610-21.

[11]李新,马明国,王建,等.黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展,2008(9):897-914.

[12]Lopes A, Touzi R, Nezry E. Adaptive Dpeckle Filters and Scene Heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(6):992-1000.

[13]Du L, Grunes M R, Lee J S. Unsupervised Segmentation of Dual-polarization SAR Images Based on Amplitude and Texture Characteristics[J]. International Journal of Remote Sensing,2002,23(20):4383-402.

[14]Baraldi A, Parmiggiani F. An Investigation of the Textural Characteristics Associated with Gray-level Coocurrence Matrix Statistical Parameters[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(2):293-304.

[15]Ulaby F, Sarabandi K, Mcdonald K, et al. Michigan Microwave Canopy Scattering Model[J].International Journal of Remote Sensing,1990,11(7):1223-1253.

[1] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[2] 王美雅, 徐涵秋. 中外超大城市热岛效应变化对比研究[J]. 自然资源遥感, 2021, 33(4): 200-208.
[3] 王小龙, 闫浩文, 周亮, 张黎明, 党雪薇. 利用SVM分类Landsat影像的朝鲜主要城市建设用地时空特征分析[J]. 国土资源遥感, 2020, 32(4): 163-171.
[4] 梅昭容, 李云驹, 康翔, 魏善宝, 潘剑君. 基于移动窗口分析法的矿区景观格局时空演变研究[J]. 国土资源遥感, 2019, 31(4): 60-68.
[5] 翟俊, 侯鹏, 赵志平, 肖如林, 颜长珍, 聂学敏. 青海湖流域景观格局空间粒度效应分析[J]. 国土资源遥感, 2018, 30(3): 159-166.
[6] 张倩宁, 谭诗腾, 徐柱, 黄泽纯. 基于GLC30数据的斑块级别景观指标适用性及简化研究[J]. 国土资源遥感, 2017, 29(4): 98-105.
[7] 金平斌, 徐鹏飞. 基于DMSP/OLS夜间灯光数据的城镇化进程及格局研究——以杭州市为例[J]. 国土资源遥感, 2017, 29(4): 205-213.
[8] 查东平, 申展, 刘足根, 廖兵, 王伟. 基于TM影像的德兴铜矿区生态环境变化[J]. 国土资源遥感, 2015, 27(4): 109-114.
[9] 杨叶涛, 王迎迎, 曾又枝. 基于面向对象的高分遥感景观格局提取方法[J]. 国土资源遥感, 2014, 26(4): 46-50.
[10] 尹锴, 赵千钧, 文美平, 花利忠, 吝涛, 石龙宇. 海岛型城市森林景观格局效应及其生态系统服务评估[J]. 国土资源遥感, 2014, 26(2): 128-133.
[11] 夏娟, 丁贤荣, 康彦彦, 葛小平, 潘进, 李森. 辐射沙脊群地貌遥感制图[J]. 国土资源遥感, 2014, 26(1): 122-126.
[12] 杜培军, 陈宇, 谭琨. 湿地景观格局与生态安全遥感监测分析——以江苏滨海湿地为例[J]. 国土资源遥感, 2014, 26(1): 158-166.
[13] 曾光, 高会军, 朱刚. 近32年塔里木盆地与准噶尔盆地湿地演化遥感分析[J]. 国土资源遥感, 2013, 25(3): 118-123.
[14] 裴刚, 刘养洁, 王国梁. 侯马市景观格局梯度分析[J]. 国土资源遥感, 2012, 24(4): 163-168.
[15] 陈雪玲, 陈绍杰, 杜培军, 夏俊士. 基于多时相遥感影像的龙岩市景观格局变化分析 [J]. 国土资源遥感, 2012, 24(2): 132-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发