Please wait a minute...
 
国土资源遥感  2010, Vol. 22 Issue (4): 108-112    DOI: 10.6046/gtzyyg.2010.04.22
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
植被指数与地表温度定量关系遥感分析—以北京市TM数据为例
   马伟1, 赵珍梅1, 刘翔2, 闫东川1
1.中国冶金地质总局矿产资源研究院,北京100025; 2.北京东方泰坦科技股份有限公司,北京100083
A Quantitative Analysis of the Relationship Between Vegetation Indices and Land Surface Temperature Based on Remote Sensing:a Case Study of TM Data for Beijing
MA Wei 1, ZHAO Zhen-mei 1, LIU Xiang 2, YAN Dong-chuan 1
1.Institute of Mineral Resources Research, China Metallurgical Geology Bureau, Beijing 100025, China; 2.Beijing Oriental TITAN Technology Co, Ltd, Beijing 100083, China
全文: PDF(785 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

 以北京市为研究区,在对Landsat-5 TM数据大气校正基础上,利用TM单窗算法定量反演地表温度,并估算了5种植被参数: 归一化差值植被指数(NDVI)、比值植被指数(RVI)、绿度植被指数(GVI)、土壤调节植被指数(MSAVI)和植被覆盖度(fg)。结合地表温度(LST)空间分布,对比分析5种植被参数与地表温度的相关程度。分析结果显示,相对于上述4种植被指数,fg与地表温度有更好的负相关性,对地表温度空间分布的指示能力更佳。利用fg与地表温度关系定量分析了植被覆盖程度对热岛效应的影响,发现北京市区平均地表温度比近郊区和远郊区分别高1.6 K和5.3 K。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕思文
延昊
景东升
王长耀
关键词 青藏高原雅江&mdash班公怒江缝合带红外遥感热异常    
Abstract

Through correcting the Landsat-5 TM image of atmospheric effects and employing the calculation method of mono-window algorithm,the LST in Beijing was calculated by inversion. On such a basis,five vegetation parameters were computed respectively, i.e., Normalized Difference Vegetation Index (NDVI),Ratio Vegetation Index (RVI),Greenness Vegetation Index (GVI),Modified Soil-Adjusted Vegetation Index (MSAVI) and vegetation fraction (fg). Combined with the spatial distribution of LST in Beijing,this paper compared and analyzed the relevance between LST and the five vegetation parameters. Quantitative analysis of vegetation effect on the Urban Heat Island (UHI) was also carried out. The results show that, of the five parameters of vegetation,fg has the strongest negative correlation with LST. The average urban LST is 1.6 K and 5.3 K higher than that of the suburban and outer suburban respectively.

Key wordsTibet plateau    Brahmaputra and Bangong-Nujiang suture belt    Infrared remote sensing    Thermal anomaly
收稿日期: 2009-11-20      出版日期: 2011-08-02
: 

 

 
  TP 79

 
基金资助:

 国家高技术研究发展计划(863计划)项目“遥感动态监测与管理信息系统”课题 (编号: 2006AA120107)资助。

作者简介: 马伟(1984-),男,硕士,主要从事资源环境遥感研究。
引用本文:   
马伟, 赵珍梅, 刘翔, 闫东川. 植被指数与地表温度定量关系遥感分析—以北京市TM数据为例[J]. 国土资源遥感, 2010, 22(4): 108-112.
MA Wei, ZHAO Zhen-Mei, LIU Xiang, YAN Dong-Chuan. A Quantitative Analysis of the Relationship Between Vegetation Indices and Land Surface Temperature Based on Remote Sensing:a Case Study of TM Data for Beijing. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 108-112.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2010.04.22      或      https://www.gtzyyg.com/CN/Y2010/V22/I4/108

[1]Oke T R. The Energetic Basis of the Urban Heat Island [J]. Quarterly Journal of the Royal Meteorological Society,1982,108:1-24.

[2]Carson T N,Gillies R R,Perry E M. A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover [J]. Remote Sensing Reviews,1994,9:161-173.

[3]Goward S N,Xue Y,Czajkowski K P. Evaluating Land Surface Moisture Conditions from the Remotely Sensed Temperature/Vegetation Index Measurements:An Exploration with the Simplified Simple Biosphere Model [J]. Remote Sensing of Environment,2002,79:225-242.

[4]Weng Q H,Lu D S,Schubring J. Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies [J]. Remote Sensing of Environment,2004,89:467-483.

[5]Boegh E,Soegaard H,Hanan N,et al. A Remote Sensing Study of the NDVI-Ts Relationship and the Transpiration from Sparse Vegetation in the Sahel Based on High Resolution Satellite Data [J]. Remote sensing of Environment,1998,69:224-240. 

[6]程承旗,吴宁,郭仕德,等. 城市热岛效应强度与植被覆盖关系研究的理论技术路线和北京案例分析[J]. 水土保持研究,2004,11(3):172-174.

[7]江樟焰,陈云浩,李京. 基于Landsat TM数据的北京城市热岛研究[J]. 武汉大学学报,2006,31(2):120-123.

[8]Small C. Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis [J]. International Journal of Remote Sensing,2001,22,1305-1334.

[9]Chander G,Markham B. Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2674-2677.

[10]Qin Z H,Karnieli A,Berliner P. A Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region [J]. International Journal of Remote Sensing,2001,22(18):3719-3746.

[11]Sobrino J A,Jime′nez-Mun~oz J C,Paolini L. Land Surface Temperature Retrieval from LANDSAT TM5 [J]. Remote Sensing of Environment. 2004,90:434-440.

[12]周淑贞. 气象学与气候学[M]. 北京:高等教育出版社,1996.

[13]杨景梅,邱金桓. 用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学,2002,26(1):9-22.

[14]覃志豪,Zhang M H,Karnieli A,等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报,2001,56(4):456-466.

[15]Rouse J W,Haas R H,Schell J A,et al. Monitoring Vegetation Systems in the Great Plain with ERTS [C]∥Proceedings of the Third Earth Resource Technology Satellite-1 Symposium. Greenbelt: NASA SP-351,1974: 3010-317.

[16]Jordan C F. Derivation of Leaf Area Index from Quality of Light on the Forest Floor [J]. Ecology,1969,50:663-666.

[17]Crist E P,Cicone R C. Application of the Tasseled Cap Concept to Simulated Thematic Mapper Data [J]. Photogrammetric Engineering and Remote Sensing,1984,50:343-352.

[18]Qi J,Chehbouni A,Huete A R,et al. A Modified Soil Adjusted Vegetation Index (MSAVI) [J]. Remote Sensing of Environment,1994,48:119-126.

[19]Gutman G,Ignatov A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models [J]. International Journal of Remote sensing,1998,19:1533-1543.

[20]陈云浩,李晓兵,史培军,等. 北京海淀区植被覆盖的遥感动态研究[J]. 植物生态学报,2001,25 (5):588-593.

[1] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[2] 闵文彬, 彭骏, 李施颖. 青藏高原FY-3C卫星积雪产品评估[J]. 国土资源遥感, 2021, 33(1): 145-151.
[3] 谷艳春, 孟庆岩, 胡蝶, 周小成. 工业热异常环境效应分析[J]. 国土资源遥感, 2020, 32(4): 190-198.
[4] 童立强, 裴丽鑫, 涂杰楠, 郭兆成, 余江宽, 范景辉, 李丹丹. 冰崩灾害的界定与类型划分——以青藏高原地区为例[J]. 国土资源遥感, 2020, 32(2): 11-18.
[5] 熊俊楠, 李伟, 刘志奇, 程维明, 范春捆, 李进. 基于GWR模型的青藏高原地区TRMM数据降尺度研究[J]. 国土资源遥感, 2019, 31(4): 88-95.
[6] 李静, 孙强强, 张平, 孙丹峰, 温礼, 李宪文. 基于多时相热红外遥感的钢铁企业生产状态辅助监测[J]. 国土资源遥感, 2019, 31(1): 220-228.
[7] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188.
[8] 余健, 姚云军, 赵少华, 贾坤, 张晓通, 赵祥, 孙亮. 基于改进的METRIC模型的农田潜热通量估算[J]. 国土资源遥感, 2018, 30(3): 83-88.
[9] 刘刚, 燕云鹏, 刘建宇. 青藏高原西部湖泊与构造背景关系遥感研究[J]. 国土资源遥感, 2018, 30(2): 154-161.
[10] 陈瀚阅, 朱利, 李家国, 范协裕. 基于Landsat8数据的2种海表温度反演单窗算法对比——以红沿河核电基地海域为例[J]. 国土资源遥感, 2018, 30(1): 45-53.
[11] 除多, 达娃, 拉巴卓玛, 徐维新, 张娟. 基于MODIS数据的青藏高原积雪时空分布特征分析[J]. 国土资源遥感, 2017, 29(2): 117-124.
[12] 李晓民, 张焜, 李冬玲, 李得林, 李宗仁, 张兴. 青藏高原札达地区多年冻土遥感技术圈定方法与应用[J]. 国土资源遥感, 2017, 29(1): 57-64.
[13] 卢善龙, 肖高怀, 贾立, 张微, 罗海静. 2000-2012年青藏高原湖泊水面时空过程数据集遥感提取[J]. 国土资源遥感, 2016, 28(3): 181-187.
[14] 白淑英, 吴奇, 史建桥, 顾海敏. 青藏高原积雪深度时空分布与地形的关系[J]. 国土资源遥感, 2015, 27(4): 171-178.
[15] 邢宇. 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015, 27(3): 99-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发