Please wait a minute...
 
国土资源遥感  2010, Vol. 22 Issue (s1): 213-218    DOI: 10.6046/gtzyyg.2010.s1.44
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
近32年新疆博斯腾湖湿地动态变化及机制分析
曾光, 高会军, 朱刚, 金谋顺
中煤航测遥感局遥感应用研究院,西安710054

A Remote Sensing Analysis of Wetlands Dynamic Changes and Mechanism in the Past 32 Years in Bosten Lake, Xinjiang
 ZENG Guang, GAO Hui-Jun, ZHU Gang, JIN Mou-Shun
Aerophotography and Remote Sensing of China Coal Shaanxi, Xi’an 710054, China
全文: PDF(799 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以1975年MSS、2000年ETM和2007年CBERS-2共3期遥感影像为数据源,在1∶5万尺度上对新疆博斯腾湖地区的湖泊湿地、沼泽湿地、河

流湿地及耕地进行了遥感解译,并编制了动态变化图。调查结果表明,32 a间,该区湖泊湿地、沼泽湿地与河流湿地严重退化,而耕地呈持

续性扩张的发展趋势。其中,1975~2000年,除湖泊湿地与湿地总面积呈小幅度增长外,沼泽湿地与河流湿地分别减少了23.71 km2和18.44

km2,耕地增加面积达454.52 km2; 2000~2007年,除耕地面积继续增加526.55 km2外,湿地资源遭到严重破坏,主要表现在湖泊湿地的萎缩

、河流湿地与沼泽湿地的严重退化,7 a间沼泽湿地与河流湿地退化速率分别是1975~2000年的37.13倍和5.24倍; 人类活动与气候因素是导

致湿地严重退化的两个重要方面,主要表现为“湿地的农业化”和“湿地的荒漠化”两个过程。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭海樵
王作棠
季景贤
关键词 地下煤火热场模型遥感    
Abstract

Based on remote sensing images of 1975(MSS), 2000(ETM) and 2007(CBERS-2), this paper interpreted lake wetland,

marsh wetland, river wetland and cultivated land of Bosten Lake at the scale of 1∶50000. Some conclusions have been

reached:The areas of lake wetland, marsh wetland and river wetland have decreased gradually, while cultivated land has

increased significantly in the past 32 years. During the period from 1975 to 2000, the areas of lake wetland and total

wetlands increased by a small margin, and cultivated land increased by 454.52 km2, but marsh wetland and river wetland

decreased by 23.71 km2 and 18.44 km2 respectively. The resources of wetlands were destroyed seriously from 2000 to 2007.

During these 7 years, lake wetland, river wetland, marsh wetland and total wetlands decreased considerably whereas

cultivated land increased by more than 526.55 km2. The deterioration velocities of marsh wetland and river wetland were

37.13 and 5.24 times higher than the velocities during 1975~2000. Natural factors and human activities were two important

factors responsible for the serious degradation of wetlands. Wetland-agriculture and wetland-desertification constituted

two processes of wetland degradation.

Key wordsUnderground coal fire    Thermal field modeling    Remote sensing
收稿日期: 2010-04-22      出版日期: 2010-11-13
:  TP 79  
基金资助:

中国地质调查局基础调查项目“全国区域地质环境遥感调查与监测”(编号: 1212010911089)。

通讯作者: 曾光(1982-),男,工程师,从事资源环境遥感等相关工作。
引用本文:   
曾光, 高会军, 朱刚, 金谋顺. 近32年新疆博斯腾湖湿地动态变化及机制分析[J]. 国土资源遥感, 2010, 22(s1): 213-218.
ZENG Guang, GAO Hui-Jun, ZHU Gang, JIN Mou-Shun.
A Remote Sensing Analysis of Wetlands Dynamic Changes and Mechanism in the Past 32 Years in Bosten Lake, Xinjiang. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 213-218.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2010.s1.44      或      https://www.gtzyyg.com/CN/Y2010/V22/Is1/213

[1]赵其国,高俊峰.中国湿地资源的生态功能及其分区[J].中国生态农业学报,2007,15(1):1-4.


[2]贾忠华,罗纨,王文焰,等.对湿地定义和湿地水文特征的探讨[J].水土保持学报,2001,15(6):117-120.


[3]万洪秀,孙占东,王润.博斯腾湖湿地生态脆弱性评价研究[J].干旱区地理,2006,29(2):248-254.


[4]王兴菊,许士国,张奇.湿地水文研究进展综述[J].水文,2006,26(4):1-5.


[5]周洪华,陈亚宁,李卫红.新疆铁干里克绿洲水文过程对土壤盐渍化的影响[J].地理学报,2008,63(7):714-724.


[6]杨光华,包安明,陈曦,等.新疆博斯腾湖湿地生态质量的定量评价[J].干旱区资源与环境,2009,23(2):119-124.


[7]张柏.遥感技术在中国湿地研究中的应用[J].遥感技术与应用,1996,11(1):67-71.


[8]刘玉安,塔西甫拉提·特依拜,沈涛,等.基于“3S”技术的于田绿洲湿地动态变化研究[J].中国沙漠,2005,25(5):706-710.


[9]周可法,吴世新,李静,等.新疆湿地资源时空变异研究[J].干旱区地理,2004,27(3):405-408.


[10]何瑛.全球气候变化下的新疆湿地演变特征初步分析——以博斯腾湖湿地为例[D].乌鲁木齐:新疆师范大学,2005.


[11]孙志高,刘景双,李彬.中国湿地资源的现状、问题与可持续利用对策[J].干旱区资源与环境,2006,20(2):83-88.


[12]裴新国,闫晓燕.博斯腾湖生态环境的演变[J].干旱区研究,1992(4):57-62.


[13]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.


[14]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步评估[J].冰川冻土,2002,24(3):219-226.


[15]施雅风,沈永平,李栋梁,等.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社,2003.


[16]曹明奎,李克让.陆地生态系统与气候相互作用的研究进展[J].地理科学进展,2000,15(4):443-451.


[17]王利花,姜琦刚,李远华.基于RS与GIS技术的若尔盖地区沼泽动态变化研究[J].国土资源遥感,2006(4):60-62.


[18]陈桂琛,彭敏,李来兴.青海湖湿地环境特征及其保护与合理利用[G]∥中国湿地研究.长春:吉林科学技术出版社,1995.


[19]王润,孙占东,高前兆.2002年前后博斯腾湖水位变化及其对中亚气候变化的响应[J].冰川冻土,2006,28(3):324-329.

[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发