Please wait a minute...
 
国土资源遥感  2012, Vol. 24 Issue (3): 38-43    DOI: 10.6046/gtzyyg.2012.03.08
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于全极化SAR数据反演鄱阳湖湿地植被生物量
刘菊1,2, 廖静娟1, 沈国状1
1. 中国科学院对地观测与数字地球科学中心, 北京 100094;
2. 中国科学院研究生院, 北京 100049
Retrieval of Wetland Vegetation Biomass in Poyang Lake Based on Quad-polarization Image
LIU Ju1,2, LIAO Jing-juan1, SHEN Guo-zhuang1
1. Center for Earth Observation and Digital Earth Chinese Academy of Sciences, Beijing 100094, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(1375 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 鄱阳湖是中国最大的淡水湖,也是国际重要湿地,对其生物量进行长期、定量研究有助于加深对区域乃至全球碳平衡的认识和理解。探讨了利用全极化Radarsat-2 C波段数据反演鄱阳湖湿地生物量的方法,改进了基于辐射传输理论的植被冠层散射模型,模拟了C波段湿地植被的后向散射特性; 应用极化分解技术,增加了神经网络训练数据,并用后向反馈神经网络(BP)算法,反演了鄱阳湖湿地植被生物量。与野外实测生物量比较的结果表明: 将改进的植被冠层散射模型和全极化分解得到的后向散射系数引入BP神经网络算法,能够有效降低生物量反演误差; 全极化SAR数据在生物量反演中具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑桂香
池天河
蔺启忠
关键词 分形遥感找矿岩性分类蚀变信息提取分形维数谱    
Abstract:The Poyang Lake is the largest freshwater lake in China as well as an internationally important wetland. Long-term quantitative study of vegetation biomass in this area helps deepen our understanding of regional and global carbon balance. The authors investigated the approach and method of Radarsat-2C-Band quad-polarization imagery for biomass retrieval in wetland vegetation. The vegetation canopy scattering model was modified and used to simulate the backscattering characteristics. Polarization decomposition was adopted to prepare the testing data with the model output for BP neural network. After obtaining the retrieval values of vegetation biomass, the values were compared with the filed-measured values. The results show that the introduction of the output data of vegetation canopy scattering model and polarimetric decomposition technique to the BP neural network algorithm could reduce the retrieval error effectively, and that the Quad-polarization imagery has broad application prospect in the field of biomass retrieval.
Key wordsfractal    remote sensing prospecting    lithological classification    alteration information extraction    fractal dimension spectra
收稿日期: 2011-03-12      出版日期: 2012-08-20
: 

TP79

 
基金资助:

中国科学院对地观测与数字地球科学中心主任科学基金项目(编号: Y1ZZ05101B)资助。

引用本文:   
刘菊, 廖静娟, 沈国状. 基于全极化SAR数据反演鄱阳湖湿地植被生物量[J]. 国土资源遥感, 2012, 24(3): 38-43.
LIU Ju, LIAO Jing-juan, SHEN Guo-zhuang. Retrieval of Wetland Vegetation Biomass in Poyang Lake Based on Quad-polarization Image. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 38-43.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2012.03.08      或      https://www.gtzyyg.com/CN/Y2012/V24/I3/38
[1] Zhang X.On the Estimation of Biomass of Submerged Vegetation Using Landsat Thematic Mapper (TM) Imagery:A Case Study of the Honghu Lake,P R China[J].International Journal of Remote Sensing,1998,19(1):11-20.
[2] Thenkabail P S,Smith R B,Pauw D E.Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics[J].Remote Sens Environ,2000,71(2):158-182.
[3] Lu D S.The Potential and Challenge of Remote Sensing-based Biomass Estimation[J].International Journal of Remote Sensing,2006,27(7):1297-1328.
[4] Steininger M K.Satellite Estimation of Tropical Secondary Forest Above Ground Biomass Data from Brazil and Bolivia[J].International Journal of Remote Sensing,2000,21(6/7):1139-1157.
[5] Lu D S,Batistella M.Exploring TM Image Texture and Its Relationships with Biomass Estimation in Rondnia,Brazilian Amazon [J].Acta Amazonica,2005,35(2):249-257.
[6] Shao Y,Liao J J,Wang C Z.Analysis of Temporal Radar Backscatter of Rice:A Comparison of SAR Observations with Modeling Results[J].Can J Remote Sens,2002,28(2):128-138.
[7] Le T,Ribbes F,Wang L F,et al.Rice Crop Mapping and Monitoring Using ERS-1 Data Based on Experiment and Modeling Results[J].IEEE Trans Geosci Remote Sens,1997,35(1):41-56.
[8] Shao Y,Fan X T,Liu H,et al.Rice Monitoring and Production Estimation Using Multitemporal Radarsat[J].Remote Sens Environ,2001,76(3):310-325.
[9] Inoue Y,Kurosu T,Maeno H,et al.Season-long Daily Measurements of Multifrequency (Ka,Ku,X,C,and L) and Full-polarization Backscatter Signatures over Paddy Rice Field and Their Relationship with Biological Variables[J].Remote Sens Environ,2002,81(3):194-204.
[10] Shen S H,Yang S B,Li B B,et al.A Scheme for Regional Rice Yield Estimation Using Envisat ASAR Data[J].Sci China Ser D:Earth Sci,2009,52(8):1183-1194.
[11] ULander L M,Sandberg G,Soj M.Biomass Retrieval Algorithm Based on P-band Biosar Experiments of Boreal Forest[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2011:4245-4248.
[12] Fan W,Chao W,Hong Z,et al.Rice Crop Monitoring in South China with Radarsat-2 Quad-polarization SAR Data[J].IEEE Geoscience and Remote Sensing Letters,2011,8(2):196-200.
[13] 黎夏,刘凯,王树功.珠江口红树林湿地演变的遥感分析[J].地理学报,2006,61(1):26-34. Li X,Liu K,Wang S G.Mangrove Wetland Changes in the Pearl River Estuary Using Remote Sensing[J].Acta Geographica Sinica,2006,61(1):26-34(in Chinese with English Abstract).
[14] 黎夏,叶嘉安,王树功,等.红树林湿地植被生物量的雷达遥感估算[J].遥感学报,2006,10(3):387-396. Li X,Ye J A,Wang S G,et al.Estimating Mangrove Wetland Biomass Using Radar Remote Sensing[J].Journal of Remote Sensing,2006,10(3):387-396(in Chinese with English Abstract).
[15] Benson M,Pierce L,Bergen K,et al.Forest Structure Estimation Using SAR,LiDAR,and Optical Data in the Canadian Boreal Forest[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2011:2609-2612.
[16] Yang S B,Zhao X Y,Li B,et al.Interpreting Radarsat-2 Quad-polarization SAR Signatures from Rice Paddy Based on Experiments[J].IEEE Geoscience and Remote Sensing Letters,2011,9(1):60-69.
[17] Zhang Y,Wang C Z,Wn J P,et al.Mapping Paddy Rice with Multitemporal ALOS/PALSAR Imagery in Southeast China[J].Int J Remote Sens,2009,30(23):6301-6315.
[18] Stauer S,Kugler F,Lee S K,et al.Polarimetric Decomposition for Forest Biomass Retrieval[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2010,4780-4783.
[19] McDonald K C,Dobson M C,Ulaby F T.Using MIMICS to Model L-band Multiangle and Multitemporal Backscatter from a Walnut Orchard[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):477-491.
[20] Ulaby F T,Sarabandi K,McDonald K,et al.Michigan Microwave Canopy Scattering Model[J].Int J Remote Sense,1990,11(7):1223-1253.
[21] Attema E P W,Ulaby F T.Vegetation Modeled as a Water Cloud [J].Radio Science,1978,13(2):357-364.
[22] De Roo R D,Du Y,Ulaby F T,et al.A Semi-empirical Backscattering Model at L-band and C-band for a Soybean Canopy with Soil Moisture Inversion[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(4):864-872.
[23] Le T T,Laur H,Mougin E,et al.Multitemporal and Dual-polarization Observations of Agricultural Vegetation Covers by X-band SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing,1989,27(6):709-718.
[24] 张远.微波遥感水稻种植面积提取、生物量反演与稻田甲烷排放模拟[D].浙江:浙江大学,2008. Zhang Y.Acreage Extraction and Biomass Estimation of Paddy Rice Based on Microwave Remote Sensing and Methane Emissions Simulation from Paddy Field[D].Zhejiang:Zhejiang University,2008.(in Chinese with English Abstract)
[25] 彭映辉,简永兴,李仁东.鄱阳湖平原湖泊水生植物群落的多样性[J].中南林学院学报,2003,23(4):22-27. Peng Y H,Jian Y X,Li R D.Community Diversity of Aquatic Plants in the Lakes of Poyang Plain District of China[J].Journal of Central South Forestry University,2003,23(4):22-27(in Chinese with English Abstract).
[26] Karam M A,Amar F,Fung A K,et al.A Microwave Polarimetric Scattering Model for Forest Canopies Based on Vector Radiative Transfer Theory[J].Remote Sens Environ,1995,53(1):16-30.
[27] Wang C Z,Wu J P,Zhang Y,et al.Characterizing L-band Scattering of Paddy Rice in Southeast China with Radiative Transfer Model and Multitemporal ALOS/PALSAR Imagery[J].IEEE Trans Geosci Remote Sens,2009,47(4):990-995.
[28] Freeman A,Durden S L.A Three-component Scattering Model for Polaimetric SAR data[J].IEEE Trans Geosci Remote Sens,1998,36(3):963-973.
[29] Yamaguchi Y,Moriyama T,Ishido M,et al.Four-component Scattering Model for Polarimetric SAR Image Decomposition[J].IEEE Trans Geosci Remote Sens,2005,43(8):1699-1706.
[30] Freeman A,Durden S L.A Three-component Scattering Model to Describe Polarimetric SAR Data[C]//Proceedings SPIE Conference on Radar Polarimetry,1992:213-225.
[31] Foody G M,Cutler M E,Mcmorrow J,et al.Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data[J].Global Ecology and Biogeography,2001,10(4):379-387.
[32] 罗晓曙.人工神经网络理论·模型·单法与应用[M].桂林:广西师范大学出版社,2005. Luo X S.Artificial Neural Network Theory·Model·Algorithm and Application [M].Guilin:Guangxi Normal University Press,2005(in Chinese).
[1] 黄惠, 郑雄伟, 孙根云, 郝艳玲, 张爱竹, 容俊, 马红章. 基于引力自组织神经网络的震害遥感影像分类[J]. 国土资源遥感, 2019, 31(3): 95-103.
[2] 尹展, 张利军, 段建良, 张沛. 南方植被区强迫不变植被抑制技术改进与应用[J]. 国土资源遥感, 2019, 31(2): 82-88.
[3] 张永梅, 孙海燕, 胥玉龙. 一种改进的基于超像素的多光谱图像分割方法[J]. 国土资源遥感, 2019, 31(1): 58-64.
[4] 王婷, 潘军, 蒋立军, 邢立新, 于一凡, 王鹏举. 基于DEM的地形因子分析与岩性分类[J]. 国土资源遥感, 2018, 30(2): 231-237.
[5] 胡华龙, 薛武, 秦志远. 基于小波纹理和基元合并的高分影像居民地提取[J]. 国土资源遥感, 2017, 29(1): 21-28.
[6] 韩海辉, 王艺霖, 任广利, 杨军录, 李健强, 杨敏. 遥感蚀变异常非线性分析方法——以北山新、老金厂为例[J]. 国土资源遥感, 2017, 29(1): 43-49.
[7] 郐开富, 徐文斌, 黄智才, 李素. 西澳皮尔巴拉地块BIF型铁矿遥感地质特征与找矿研究[J]. 国土资源遥感, 2015, 27(4): 93-101.
[8] 周林滔, 杨国范, 赵福强, 杜娟. EMD与分形相结合的遥感影像水体信息提取方法[J]. 国土资源遥感, 2014, 26(4): 41-45.
[9] 贾春阳, 李卫华, 李小春. 基于自适应权值FNEA算法的高分辨率遥感图像分割[J]. 国土资源遥感, 2013, 25(4): 22-25.
[10] 钱建平, 张渊, 赵小星, 赵少杰, 李承礼. 内蒙古东乌旗遥感构造和蚀变信息提取与找矿预测[J]. 国土资源遥感, 2013, 25(3): 109-117.
[11] 张远飞, 袁继明, 杨自安, 吕伟艳, 张思颖. 基于物理意义的二维散点图类型划分与遥感蚀变信息提取[J]. 国土资源遥感, 2013, 25(2): 57-62.
[12] 王冬寅, 朱谷昌, 张远飞. 典型地物光谱空间结构特征与基本统计参数分析[J]. 国土资源遥感, 2012, 24(4): 138-145.
[13] 郑桂香, 池天河, 蔺启忠. 分形在岩性分类及蚀变信息提取中的应用 [J]. 国土资源遥感, 2012, 24(2): 110-115.
[14] 冯永玖, 刘丹, 韩震. 遥感和GIS支持下的九段沙岸线提取及变迁研究[J]. 国土资源遥感, 2012, 24(1): 65-69.
[15] 张远飞, 吴德文, 袁继明, 朱谷昌, 杨自安, 胡波. 遥感蚀变信息多层次分离技术模型与应用研究[J]. 国土资源遥感, 2011, 23(4): 6-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发