Please wait a minute...
 
国土资源遥感  2013, Vol. 25 Issue (3): 30-37    DOI: 10.6046/gtzyyg.2013.03.06
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于叶片-冠层-大气耦合的植物星上光谱特性模拟分析
佃袁勇1,2, 方圣辉2
1. 华中农业大学园艺林学学院, 武汉 430079;
2. 武汉大学遥感信息工程学院, 武汉 430070
Simulation analysis of vegetation TOA reflectance based on coupled leaf-canopy-atmosphere radiative transfer model
DIAN Yuanyong1,2, FANG Shenghui2
1. College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430079, China;
2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430070, China
全文: PDF(2199 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

将植物叶片光谱模型PROSPECT、植被冠层光谱模型SAIL与大气辐射传输模型6S进行耦合,模拟不同参数条件下植被星上光谱信息在400~900 nm谱段的变化,并分析从地表植物叶片光谱、冠层光谱到卫星入瞳处光谱的过程中,植物叶片的叶肉结构参数、叶绿素含量、干重、叶片含水量和植物冠层的叶面积指数(LAI)、太阳天顶角、气溶胶光学厚度、地表邻近效应以及混合像元等参数对植物光谱的影响。研究结果表明,由大气引起的误差要远大于由植物本身的各种生化参数引起的误差; 在叶片尺度上引起反射率发生变化的主要因素是叶绿素含量和叶肉结构参数,含水量的影响非常小,可以忽略; 在冠层尺度上引起光谱发生变化的因素主要有LAI和叶片倾角。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚慧
倪万魁
Abstract

Coupled plant leaf spectral model PROSPECT, vegetation canopy spectral model SAIL(scattering by arbitrarily inclined leaves) and atmospheric radiative transfer model 6S(second simulation of the satellite signal in the solar spectrum)were used to simulate the top of atmospheric(TOA) reflectance of vegetation under different conditions. And then the influences on the spectrum of the leaf mesophyll structure parameters, chlorophyll content, leaf dry weight, leaf water content, plant canopy of LAI, solar zenith angle, aerosol optical thickness (AOT), adjacency effect and mix-pixel effect were analyzed. The research results show that the vegetation TOA reflectance error caused by the atmosphere is by far larger than the error caused by the biochemical parameters of plant itself. At the leaf level scale, the main factors causing reflectance change are chlorophyll content and mesophyll structure parameters, the effect of water content is very small on leaf reflectance in 400~900 nm. At the canopy level, the main factors causing spectral change are LAI and leaf angle distribution.

Key wordssurface environment    dynamic change    remote sensing    monitoring    interpretation keys
收稿日期: 2012-09-07      出版日期: 2013-07-03
:  TP 75  
基金资助:

国家自然科学基金"基于叶面积指数反演的城市绿量格局研究"项目(编号: 30972413)和中央高校基本科研业务费专项资金资助项目(编号: 2012ZYTS037)共同资助。

作者简介: 佃袁勇(1981-),男,博士,讲师,主要从事遥感在资源环境中的应用方面的研究。 E-mail: dianyuanyong@126.com。
引用本文:   
佃袁勇, 方圣辉. 基于叶片-冠层-大气耦合的植物星上光谱特性模拟分析[J]. 国土资源遥感, 2013, 25(3): 30-37.
DIAN Yuanyong, FANG Shenghui. Simulation analysis of vegetation TOA reflectance based on coupled leaf-canopy-atmosphere radiative transfer model. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 30-37.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2013.03.06      或      https://www.gtzyyg.com/CN/Y2013/V25/I3/30

[1] 杨曦光,范文义,于颖.基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演[J].光谱学与光谱分析,2010,30(11):3022-3026. Yang X G,Fan W Y,Yu Y.Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models[J].Spectroscopy and Spectral Analysis,2010,30(11):3022-3026.

[2] Laurent V C E,Verhoef W,Clevers J G P W,et al.Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models[J].Remote Sensing of Environment,2011,115(4):1043-1052.

[3] Wang Q,Li P H.Hyperspectral indices for estimating leaf biochemical properties intemperate deciduous forests:Comparison of simulated and measured reflectance data sets[J].Ecological Indicators,2011, 14(1):56-65.

[4] 杨贵军,赵春江,邢著荣,等.基于PROBA/CHRIS遥感数据和PROSAIL模型的春小麦LAI反演[J].农业工程学报,2011,27(10):88-94. Yang G J,Zhao C J,Xing Z R,et al.LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral multi-angular data and PROSAIL model[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(10):88-94.

[5] Huemmrich K F.The GeoSail model:A simple addition to the SAIL model to describe discontinuous canopy reflectance[J].Remote Sensing of Environment,2001,75(3):423-431.

[6] Bacour C,Jacquemoud S,Tourbier Y,et al.Design and analysis of numerical experiments to compare four canopy reflectance models[J].Remote Sensing of Environment,2002,79(1):72-83.

[7] Jacquemoud S,Baret F.PROSPECT:A model of leaf optical properties spectra[J].Remote Sensing of Environment,1990,34(2):75-91.

[8] Feret J B,Franois C,Asner G P,et al.PROSPECT-4 and 5:Advances in the leaf optical properties model separating photosynthetic pigments[J].Remote Sensing of Environment,2008,112(6):3030-3043.

[9] Dawson T P,Curran P J,Plummer S E.LIBERTY-modeling the effects of leaf biochemical concentration on reflectance spectra[J].Remote Sensing of Environment,1998,65(1):50-60.

[10] Jacquemoud S,Baret F,Andrieu B,et al.Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data:Application to TM and AVIRIS sensors[J].Remote Sensing of Environment,1995,52(3):163-172.

[11] Jacquemoud S,Verhoef W,Baret F,et al.PROSPECT+SAIL models:A review of use for vegetation characterization[J].Remote Sensing of Environment,2009,113(s1):S56-S66.

[12] Verhoef W,Bach H.Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models[J].Remote Sensing of Environment,2003,87(1):23-41.

[13] 吴朝阳,牛铮.基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进[J].植物学通报,2008,25(6):714-721. Wu C Y,Niu Z.Improvement in linearity between hyperspectral vegetation indices and chlorophyll content,leaf area index based on radiative transfer models[J].Chinese Bulletin of Botany,2008,25(6):714-721.

[14] 施润和,庄大方,牛铮,等.基于辐射传输模型的叶绿素含量定量反演[J].生态学杂志,2006,25(5):591-595. Shi R H,Zhuang D F,Niu Z,et al.Quantitative inverseion of chlorophyll content based on radiative transfer model[J].Chinese Journal of Ecology,2006,25(5):591-595.

[15] Verhoef W,Bach H.Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data[J].Remote Sensing of Environment,2007,109(2):166-182.

[16] Vermote E F,Tanre D,Deuze J L,et al.Second simulation of the satellite signal in the solar spectrum,6S:An overview[J].IEEE Transaction Geoscience and Remote Sensing,1997,35(3):675-686.

[1] 张云生, 邹峥嵘. 基于改进ORB算法的遥感图像自动配准方法[J]. 国土资源遥感, 2013, 25(3): 20-24.
[2] 蔡红玥, 姚国清. 基于分水岭算法的高分遥感图像道路提取优化方法[J]. 国土资源遥感, 2013, 25(3): 25-29.
[3] 潘佩芬, 杨武年, 戴晓爱. 基于主成分分析的植被含水率模型[J]. 国土资源遥感, 2013, 25(3): 38-42.
[4] 李雪, 舒宁, 刘小利, 李井冈. 基于特征映射模式分析的对象级变化检测方法[J]. 国土资源遥感, 2013, 25(3): 51-55.
[5] 杨德贺, 陈宜金, 杨溪, 吕京国, 张子昕, 张帅. 面向震害信息提取的多源遥感图像自动配准[J]. 国土资源遥感, 2013, 25(3): 56-60.
[6] 李峰, 崔希民, 袁德宝, 王强, 吴亚军. 利用机载LiDAR点云提取复杂城市建筑物面域[J]. 国土资源遥感, 2013, 25(3): 85-89.
[7] 李光辉, 王成, 习晓环, 郑照军, 骆社周, 岳彩荣. 机载LiDAR和高光谱数据融合提取冰川雪线[J]. 国土资源遥感, 2013, 25(3): 79-84.
[8] 马利春, 杨仁忠, 石璐. Forman相位校正算法的改进与实现[J]. 国土资源遥感, 2013, 25(3): 97-101.
[9] 王迅, 刘书杰, 张晓卫, 郝力壮, 赵月平, 王万邦. 基于HJ-1A/1B数据的高寒草地牧草营养动态监测模型[J]. 国土资源遥感, 2013, 25(3): 183-188.
[10] 何海清. 一种无人机影像分块的亚像素角点快速检测算法[J]. 国土资源遥感, 2012, 24(4): 21-25.
[11] 刘斌, 孙喜亮, 邸凯昌, 刘召芹. 资源三号卫星传感器校正产品定位精度验证与分析[J]. 国土资源遥感, 2012, 24(4): 36-40.
[12] 胡波, 朱谷昌, 张远飞, 冷超. 基于高斯混合模型的遥感信息提取方法研究[J]. 国土资源遥感, 2012, 24(4): 41-47.
[13] 秦雁, 邓孺孺, 何颖清, 陈蕾, 陈启东, 熊首萍. 基于光谱及几何信息的TM图像厚云去除算法[J]. 国土资源遥感, 2012, 24(4): 55-61.
[14] 李超, 王心源, 骆磊, 吉玮. 基于Apollo图像的月表撞击坑自动提取[J]. 国土资源遥感, 2012, 24(4): 71-75.
[15] 王东广, 肖鹏峰, 宋晓群, 王铁成, 陈刚. 结合纹理信息的高分辨率遥感图像变化检测方法[J]. 国土资源遥感, 2012, 24(4): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发