Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (2): 43-47    DOI: 10.6046/gtzyyg.2014.02.08
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
资源一号02C星图像水体信息提取方法
胡卫国1, 孟令奎1, 张东映1, 樊志伟1, 成建国2, 李晓晖1
1. 武汉大学遥感信息工程学院, 武汉 430079;
2. 水利部水利信息中心, 北京 100053
Methods of water extraction from ZY-1 02C satellite imagery
HU Weiguo1, MENG Lingkui1, ZHANG Dongying1, FAN Zhiwei1, CHENG Jianguo2, LI Xiaohui1
1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
2. Water Information Center, Ministry of Water Resources, Beijing 100053, China
全文: PDF(1310 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对我国西部高原湖区资源卫星遥感监测与应用需求,开展资源一号02C星(ZY-1 02C)图像水体信息提取方法研究。用归一化植被指数和归一化差异水体指数进行龙羊峡库区水体信息提取,并将二者结合,提出决策树水体信息提取方法。以人工解译的水体区域为参考,对水体区域的整体提取结果、细节提取结果和误提取率进行统计和对比分析。实验结果表明,NDVI法易受到薄云的影响,但受冰雪和地形的影响较小;NDWI法在冰雪、薄云和山体阴影等成像条件下会受到不同程度的影响;决策树法虽然受山体阴影等地形的影响较大,但是能有效地消除冰雪和薄云等气候环境的干扰。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏清
杨武年
赵妮
关键词 TM蚀变信息主成分分析密度分割    
Abstract

Taking into consideration the needs of the remote sensing monitoring and application with Chinese resource satellite in west highland lakes, the authors carried out research on water extraction method by using ZY-1 02C satellite images. The two traditional spectral indexes i.e., the normalized difference vegetation index(NDVI)and the normalized differential water index(NDWI), were used to extract the water bodies in Longyangxia reservoir and, by combining these two kinds of water extraction method, a decision tree water extraction method was presented in this paper. Taking the manual interpretation of the water region as the reference,the authors used the overall area of the water extraction results, the detail extraction and the rate of error extraction results to make statistic and comparative analysis. The experimental results show that the NDVI method is susceptible to the influence of thin cloud, but is less affected by snow and terrain. Under the imaging conditions of snow,thin cloud and mountain shadows,the NDWI method is subject to different degrees of impact. In spite of the fact that it is susceptible to mountain terrain effects such as shadows,the method of the decision tree can effectively eliminate the interference of climate conditions such as snow and thin cloud.

Key wordsTM    alteration information    principal component analysis    density segmentation
收稿日期: 2013-05-28      出版日期: 2014-03-28
ZTFLH:  TP751.1  
基金资助:

水利部公益性行业科研专项经费项目(编号:201001046)资助。

作者简介: 胡卫国(1989- ),男,硕士研究生,主要从事遥感监测方面的研究。Email:wghu@whu.edu.cn。
引用本文:   
胡卫国, 孟令奎, 张东映, 樊志伟, 成建国, 李晓晖. 资源一号02C星图像水体信息提取方法[J]. 国土资源遥感, 2014, 26(2): 43-47.
HU Weiguo, MENG Lingkui, ZHANG Dongying, FAN Zhiwei, CHENG Jianguo, LI Xiaohui. Methods of water extraction from ZY-1 02C satellite imagery. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 43-47.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.02.08      或      http://www.gtzyyg.com/CN/Y2014/V26/I2/43

[1] 杨莹,阮仁宗.基于TM影像的平原湖泊水体信息提取的研究[J].遥感应用,2010(3):60-64. Yang Y,Ruan R Z.Extraction of plain lake water body based on TM imagery[J].Remote Sensing Information,2010(3):60-64.

[2] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. Xu H Q.A study on information extraction of water body with the modified normalized difference water index(MNDWI)[J].Journal of Remote Sensing,2005,9(5):589-595.

[3] 王培培.基于ETM影像的水体信息自动提取与分类研究[J].首都师范大学学报:自然科学版,2009,30(6):75-79. Wang P P.Automatic extraction and classification of water body from ETM image[J].Journal of Capital Normal University:Natural Science Edition,2009,30(6):75-79.

[4] 都金康,黄永胜,冯学智,等.SPOT卫星影像的水体提取方法及分类研究[J].遥感学报,2001,15(3):214-219. Du J K,Huang Y S,Feng X Z,et al.Study on water bodies extraction and classification from SPOT image[J].Journal of Remote Sensing,2001,15(3):214-219.

[5] 陈蕾,邓孺孺,陈启东,等.基于水质类型的TM图像水体信息提取[J].国土资源遥感,2012,24(1):90-94. Chen L,Deng R R,Chen Q D,et al.The extraction of water body information from TM imagery based on water quality types[J].Remote Sensing for Land and Resources,2012,24(1):90-94.

[6] 沈金祥,杨辽,陈曦,等.面向对象的山区湖泊信息自动提取方法[J].国土资源遥感,2012,24(3):84-91. Shen J X,Yang L,Chen X,et al.A method for object-oriented automatic extraction of lakes in the mountain area from remote sensing image[J].Remote Sensing for Land and Resources,2012,24(3):84-91.

[7] 韩晶,邓喀中,范洪冬.利用波段合成研究SPOT多光谱影像水体提取方法[J].全球定位系统,2012,37(5):76-80. Han J,Deng K Z,Fan H D.Using band synthesis to research SPOT multispectral image water extraction methods[J].GNSS World of China,2012,37(5):76-80.

[8] 范登科,李明,贺少帅.基于环境小卫星CCD影像的水体提取指数法比较[J].地理与地理信息科学,2012,28(2):14-19. Fan D K,Li M,He S S.Comparison and research on different indices for water extraction based on CCD images from HJ satellite[J].Geography and Geo-information Science,2012,28(2):14-19.

[9] 中国资源卫星应用中心.资源一号02C卫星[EB/OL].[2012-07-25].http://www.cresda.com/n16/n1130/n175275/175577.html. China Centre for Resources Satellite Data and Application.ZY - 1 02C satellite[EB/OL].[2012-07-25].http://www.cresda.com/n16/n1130/n175275/175577.html.

[10] 百度百科.龙羊峡水库[EB/OL].[2013-05-02].http://baike.baidu.com/view/475889.htm. Baidu Baike.Longyangxia reservoir[EB/OL].[2013-05-02].http://baike.baidu.com/view/475889.htm.

[11] Mcfeeters S K.The use of the normalized difference water index(NDWI)in the delineation of open water features[J].International Journal of Remote Sensing,1996,17(7):1420-1432.

[12] 汤国安,杨晰,等.ArcGIS地理信息系统空间分析实验教程[M].2版.北京:科学出版社,2012:112-131. Tang G A,Yang X,et al.ArcGIS geographic information systems spatial analysis experimental course[M].2nd.Beijing:Science Press,2012:112-131.

[13] 朱长明,张新,骆剑承,等.基于样本自动选择与SVM结合的海岸线遥感自动提取[J].国土资源遥感,2013,25(2):69-74. Zhu C M,Zhang X,Luo J C,et al.Automatic extraction of coastline by remote sensing technology based on SVM and auto-selection of training samples[J].Remote Sensing for Land and Resources,2013,25(2):69-74.

[1] 田青林,潘蔚,李瑶,张川,陈雪娇,余长发. 基于小波包变换和权重光谱角制图的岩心高光谱蚀变信息提取[J]. 国土资源遥感, 2019, 31(4): 41-46.
[2] 邢学文,刘松,钱凯俊. Landsat TM/ETM波段反射率与水面油膜厚度关系研究[J]. 国土资源遥感, 2019, 31(4): 69-78.
[3] 肖晨超,吴小娟,汪大明,褚永彬. 基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例[J]. 国土资源遥感, 2019, 31(4): 120-127.
[4] 曹琦,师满江,周亮,王婷,彭黎君,郑仕雷. 山地城市裸地时空变化的热环境响应特征研究[J]. 国土资源遥感, 2019, 31(4): 190-198.
[5] 姚本佐,何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[6] 马鸿霖,贾伟洁,付长亮,李伟. 沙特阿拉伯吉达东北部地质构造与蚀变信息提取及找矿有利部位预测[J]. 国土资源遥感, 2019, 31(3): 174-182.
[7] 阿茹罕,何芳,王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[8] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
[9] 尹展,张利军,段建良,张沛. 南方植被区强迫不变植被抑制技术改进与应用[J]. 国土资源遥感, 2019, 31(2): 82-88.
[10] 涂兵,张晓飞,张国云,王锦萍,周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[11] 张竞,纪冬丽,白耀楠,苗晋杰,郭旭,杜东,裴艳东. 基于遥感的潮白河中游冲积平原宏观沉积特征[J]. 国土资源遥感, 2019, 31(1): 156-163.
[12] 刘建宇,陈玲,李伟,王根厚,王博. 基于ASTER数据韧性剪切带型金矿蚀变信息提取方法优化[J]. 国土资源遥感, 2019, 31(1): 229-236.
[13] 汪子义,张廷斌,易桂花,钟康惠,别小娟,王继斌,孙姣姣. Landsat8 OLI数据斑岩铜矿遥感蚀变矿物组合提取研究[J]. 国土资源遥感, 2018, 30(3): 89-95.
[14] 桑潇,国巧真,潘应阳,付盈. 基于TM和OLI数据山西省潞城市土地利用动态变化分析与预测[J]. 国土资源遥感, 2018, 30(2): 125-131.
[15] 尹凌宇, 覃先林, 孙桂芬, 刘树超, 祖笑锋, 陈小中. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018, 30(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发