Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (2): 99-104    DOI: 10.6046/gtzyyg.2014.02.17
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于HJ-CCD数据的海面溢油提取方法研究
盖颖颖, 周斌, 孙元芳, 周燕
山东省科学院海洋仪器仪表研究所, 青岛 266001
Study of extraction methods for ocean surface oil spill using HJ-CCD data
GAI Yingying, ZHOU Bin, SUN Yuanfang, ZHOU Yan
Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266001, China
全文: PDF(1868 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

快速、准确地获取溢油污染信息,对海洋的动态监测、保护和可持续利用具有重要意义。环境与灾害监测预报小卫星星座一号(HJ-1)是我国针对生态环境污染和灾害监测发射的新型卫星平台,但HJ-1 CCD多光谱数据的光谱波段较少,仅依赖光谱信息获取海面溢油范围的精度较低。因此,以墨西哥湾溢油事件为研究对象,在分析不同地物光谱特征的基础上,采用灰度共生矩阵,选择合适的纹理结构因子,提取HJ-1 CCD图像中影响溢油识别的地物纹理特征;建立光谱特征和纹理特征相结合的决策树模型,提取海面溢油信息,并与只考虑光谱信息的传统分类方法进行精度对比。结果表明,与最大似然分类法相比,决策树方法的油膜提取用户精度和制图精度分别提高了11.85%和4.28%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周进生
牛建英
张旭
于艳蕊
关键词 矿山遥感监测实施效果指标体系评估方法    
Abstract

Rapid and accurate access to the oil spill information is of great significance for dynamic monitoring, conservation and sustainable use of the oceans. HJ-1 is a new satellite platform designed for ecological environmental pollutions and disasters. However, the multispectral image obtained from HJ-CCD has insufficient spectral bands, and the accuracy of acquiring the oil spill coverage only by spectral information is low. In this paper, the oil spill that occurred in the Gulf of Mexico was selected as the research object. Based on the spectral analysis of different features, the authors chose the right texture structure factors and extracted the texture characteristics which affect oil spill identification by gray co-occurrence matrix. A decision tree model combining spectral characteristics with texture characteristics was established to extract the oil spill on the sea surface. A comparative analysis by using the result of maximum likelihood supervision classification method was performed, and the results show that, in comparison with the maximum likelihood classification method, the decision tree method could improve the user's accuracy and the producer's accuracy of oil spill extraction by 11.85% and 4.28% respectively.

Key wordsmine remote sensing monitoring    implementation effect    index system    assessment method
收稿日期: 2013-05-09      出版日期: 2014-03-28
ZTFLH:  TP751.1  
基金资助:

山东省留学人员科技活动择优资助项目“基于GPU超级计算的实时海面目标识别算法研究”(编号:SR-12-10-1)资助。

作者简介: 盖颖颖(1987- ),女,硕士,研究实习员,主要从事海洋遥感遥测方面的研究。Email:gaiyingying@pku.edu.cn。
引用本文:   
盖颖颖, 周斌, 孙元芳, 周燕. 基于HJ-CCD数据的海面溢油提取方法研究[J]. 国土资源遥感, 2014, 26(2): 99-104.
GAI Yingying, ZHOU Bin, SUN Yuanfang, ZHOU Yan. Study of extraction methods for ocean surface oil spill using HJ-CCD data. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 99-104.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.02.17      或      http://www.gtzyyg.com/CN/Y2014/V26/I2/99

[1] Camilla B,Solberg A H S.Oil spill detection by satellite remote sensing [J].Remote Sensing of Environment,2005,95(1):1-13.

[2] Carnesecchi F,Byfield V,Cipollini P,et al.An optical model for the interpretation of remotely sensed multispectral images of oil spill[C]//Charles R.Proceeding SPIE 7105,Remote Sensing of the Ocean,Sea Ice and Large Water Regions 2008.Wales,2008.

[3] Li Y,Ma L,Yu S M,et al.Remote sensing of marine oil spills and its applications[C]//Tong Q X.Remote Sensing of the Environment:16th National Symposium on Remote Sensing of China.Beijing,2007.

[4] 牛亚琴.基于遥感图像的海上溢油现象识别研究[D].舟山:浙江海洋学院,2012. Niu Y Q.Identification of marine spilled oil based on remote sensing image[D].Zhoushan:Zhejiang Ocean University,2012.

[5] Tseng W Y,Chiu L S.AVHRR observations of Persian Gulf oil spills[C]//IEEE International Geoscience and Remote Sensing Symposium.Pasadena:IEEE,1994:779-782.

[6] 侯懿峰.MODIS数据解析及海面溢油分类研究[D].大连:大连海事大学,2012. Hou Y F.The research on MODIS data processing and marine oil spill classification[D].Dalian:Dalian Maritime University,2012.

[7] 陆应诚,陈君颖,包颖,等.基于HJ-1星CCD数据的溢油遥感特性分析与信息提取[J].中国科学:信息科学,2011,41(增刊):193-201. Lu Y C,Chen J Y,Bao Y,et al.Using HJ-1 satellite CCD data for remote sensing analysis and information extraction in oil spill scenarios[J].Scientia Sinica:Informationis,2011,41(s1):193-201.

[8] 姜良美,王芳,肖志坤,等.基于纹理特征的微山湖湿地信息提取研究[J].湖南科技大学学报:自然科学版,2011,26(4):68-72. Jiang L M,Wang F,Xiao Z K,et al.Study on extracting wetland information in Weishanhu Lake area based on texture feature[J].Journal of Hunan University of Science and Technology:Natural Science Edition,2011,26(4):68-72.

[9] 张砾.辅以纹理特征的洪泽湖湿地信息提取[J].遥感信息,2010(3):30-34. Zhang L.Wetland information extraction combined with texture features[J].Remote Sensing Information,2010(3):30-34.

[10] Haralick R M,Shanmugam K,Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems,Man and Cybernetics,1973,3(6):610-621.

[11] Franklin S E,Hall R J,Moskal L M,et al.Incorporating texture into classification of forest species composition from airborne multispectral images[J].International Journal of Remote Sensing,2000,21(1):61-79.

[12] Li G Y,Lu D S,Moran E,et al.A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:26-38.

[13] 冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007(3):19-22. Feng J H,Yang Y J.Study of texture images extraction based on gray level co-occurence matrix[J].Beijing Surveying and Mapping,2007(3):19-22.

[14] 谭湘莹,于秀兰,钱国蕙.一种大小窗口结合的SAR图像纹理特征分类方法[J].系统工程与电子技术,2000,22(4):15-17. Tan X Y,Yu X L,Qian G H.A classification method by use of SAR image texture characteristics with combination of large and small windows[J].Systems Engineering and Electronics,2000,22(4):15-17.

[15] Kasapoglu N G,Yazgan B,Akleman F.Hierarchical decision tree classification of SAR data with feature extraction method based on spatial variations[C]//IEEE International Geoscience and Remote Sensing Symposium.Toulouse,2003:3453-3455.

[16] 赵文吉,段福州,刘晓萌,等.ENVI遥感影像处理专题与实践[M].北京:中国环境科学出版社,2007:54. Zhao W J,Duan F Z,Liu X M,et al.ENVI processing topics and practice for remote sensing images[M].Beijing:China Environmental Science Press,2007:54.

[17] 巴桑,刘志红,张正健,等.决策树在遥感影像分类中的应用[J].高原山地气象研究,2011,31(2):31-34. Ba S,Liu Z H,Zhang Z J,et al.Decision tree and its application in remote sensing image classification[J].Plateau and Mountain Meteorology Research,2011,31(2):31-34.

[1] 刘晰,郝利娜,杨显华,黄洁,张志,杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[2] 薛庆, 吴蔚, 李名松, 董双发, 章新益, 石海港. 高分一号数据在矿山遥感监测中的应用[J]. 国土资源遥感, 2017, 29(s1): 67-72.
[3] 刁明光, 薛涛, 李建存, 李文吉, 梁建东. 基于ArcGIS的矿山遥感监测成果编制系统[J]. 国土资源遥感, 2016, 28(3): 194-199.
[4] 吕桂军, 李英成, 白洁, 赵雅莉. 基于时序Landsat数据的地理国情监测方法初探[J]. 国土资源遥感, 2015, 27(2): 126-132.
[5] 安志宏, 聂洪峰, 王昊, 荆青青. ZY-1 02C星数据在矿山遥感监测中的应用研究与分析[J]. 国土资源遥感, 2015, 27(2): 174-182.
[6] 周进生, 牛建英, 张旭, 于艳蕊. 矿山遥感监测评估特点与指标体系[J]. 国土资源遥感, 2014, 26(2): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发