Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (3): 24-30    DOI: 10.6046/gtzyyg.2014.03.04
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
水浇地与旱地春小麦冠层高光谱反射特征比较
靳彦华1,3, 熊黑钢2,3, 张芳1,3
1. 新疆大学资源与环境科学学院, 乌鲁木齐 830046;
2. 北京联合大学应用文理学院, 北京 100083;
3. 教育部绿洲生态重点实验室, 乌鲁木齐 830046
Comparative study of canopy spectral reflectance characteristics of spring wheat in irrigated land and dry land
JIN Yanhua1,3, XIONG Heigang2,3, ZHANG Fang1,3
1. College of Resources & Environment Science, Xinjiang University, Urumqi 830046, China;
2. College of Art & Science, Beijing United University, Beijing 100083, China;
3. Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
全文: PDF(1805 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 用野外实测的水浇地与不同坡向旱地春小麦各发育期的冠层光谱数据,对比分析各发育期春小麦冠层光谱反射特征;依据TM图像的波段设置将实测光谱划分为4个波段,对比分析水浇地与旱地春小麦光谱在各波段的差异,并选择出识别水浇地与旱地春小麦的最佳波段。研究结果表明:不同地类水浇地与旱地春小麦冠层光谱反射率在可见光波段呈现的总特点是阳坡地>双面坡地>阴坡地>水浇地,在近红外波段则相反;不同发育期的水浇地与旱地春小麦在可见光波段均呈现起身期>乳熟期>拔节期>抽穗期>扬花期的特点,在近红外波段则呈现扬花期>抽穗期>拔节期>起身期>乳熟期的特点;因各地类春小麦叶绿素含量的相对值和覆盖度不同,在可见光波段的光谱曲线也存在差异——水浇地与旱地春小麦在起身期和乳熟期的光谱曲线各成1条线,而在其他3个发育期则形成2条曲线(水浇地和阴坡地的光谱曲线基本重合,阳坡地和双面坡地的光谱曲线完全重合)。760~900 nm谱段是识别水浇地与旱地春小麦的最佳波段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
官晓
周萍
陈圣波
关键词 地面实测光谱土壤有机质(SOM)多元回归分析模糊数学    
Abstract:Canopy data from hyperspectral remote sensing of irrigated land and dry land at different growth stages were used to analyze the difference between irrigated land and dry land. According to the bands of TM image,the measured spectrum was divided into four bands,the comparison of the spectra between irrigated land and dry land at each band was made and, on such a basis, the best band to identify irrigated land and dry land for spring wheat was chosen. The results show that canopy spectral reflectance in the visible region and in the near-infrared region of spring wheat has complete variation regularity: at the first band,the order is sunny land>double-sided land>shady land>irrigated land,which is opposite to the things of the near-infrared band. From setting to milk stage,in the visible band,spring wheat of irrigated land and dry land shows the order of setting stage>milk stage>jointing stage>heading stage>flowering stage; in the near-infrared band, the order is flowering stage>heading stage>jointing stage>setting stage>milk stage. The spectral curves are different because of chlorophyll content and coverage. In the visible band,spectral curves of spring wheat at setting and milk stage have their own lines but become two lines in the middle period; i.e.,sunny land and double-sided land are completely coincident with each other,whereas shady land and irrigated land are basically coincident with each other. The spectral range of 760~900 nm is the optimal band for identifying spring wheat in irrigated land and dry land.
Key wordsground measured spectra    soil organic matter(SOM)    multiple regression analysis    fuzzy mathematics
收稿日期: 2013-06-17      出版日期: 2014-07-01
:  TP79  
  S127  
  O433.3  
基金资助:国家自然科学基金项目“新疆天山北坡人类活动影响下绿洲水盐耦合关系与环境效应”(编号:41171165)、北京联合大学人才强校计划项目(编号:BPHR2012E01)和北京市属高等学校高层次人才引进与培养计划项目(编号:IDHT20130322)共同资助。
通讯作者: 熊黑钢(1956-),男,博士,教授,主要从事遥感应用及干旱区资源环境研究。Email:xhg1956@sohu.com。
作者简介: 靳彦华(1987-),女,硕士,主要从事区域可持续发展研究。Email:jyh76707027@163.com。
引用本文:   
靳彦华, 熊黑钢, 张芳. 水浇地与旱地春小麦冠层高光谱反射特征比较[J]. 国土资源遥感, 2014, 26(3): 24-30.
JIN Yanhua, XIONG Heigang, ZHANG Fang. Comparative study of canopy spectral reflectance characteristics of spring wheat in irrigated land and dry land. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 24-30.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.03.04      或      https://www.gtzyyg.com/CN/Y2014/V26/I3/24
[1] 易秋香,黄敬峰,王秀珍,等.玉米粗脂肪含量高光谱估算模型初探[J].作物学报,2007,33(1):171-174. Yi Q X,Huang J F,Wang X Z,et al.Preliminary hyperspectral estimation models for crude fat content in corn[J].Acta Agronomica Sinica,2007,33(1):171-174.
[2] 方红亮,田庆久.高光谱遥感在植被监测中的研究综述[J].遥感技术与应用,1998,13(1):62-69. Fang H L,Tian Q J.A review of hyperspectral remote sensing in vegetation monitoring[J].Remote Sensing Technology and Application,1998,13(1):62-69.
[3] 叶娜,贾建军,田静,等.浒苔遥感监测方法的研究进展[J].国土资源遥感,2013,25(1):7-12. Ye N,Jia J J,Tian J,et al.Advances in the study of Ulvapolifera monitoring with remote sensing[J].Remote Sensing for Land and Resources,2013,25(1):7-12.
[4] 侯学会,牛铮,黄妮,等.小麦生物量和真实叶面积指数的高光谱遥感估算模型[J].国土资源遥感,2012,24(4):30-35. Hou X H,Niu Z,Huang N,et al.The hyperspectral remote sensing estimation models of total biomass and true LAL of wheat[J].Remote Sensing for Land and Resources,2012,24(4):30-35.
[5] 童庆禧,郑兰芬,王晋年,等.湿地植被成象光谱遥感研究[J].遥感学报,1997,1(1):50-57. Tong Q X,Zheng L F,Wang J N,et al.Study on imaging spectrometer remote sensing information for wetland vegetation[J].Journal of Remote Sensing,1997,1(1):50-57.
[6] 杨长明,杨林章,韦朝领,等.不同品种水稻群体冠层光谱特征比较研究[J].应用生态学报,2002,13(6):689-692. Yang C M,Yang L Z,Wei C L,et al.Canopy spectral characteristics of different rice varieties[J].Chinese Journal of Applied Ecology,2002,13(6):689-692.
[7] 周学秋,朱雨杰,严衍禄.生育阶段小麦冠层的反射光谱特征及其模糊聚类的研究[J].激光生物学,1996,5(3):870-873. Zhou X Q,Zhu Y C,Yan Y L.Studies on canopies reflectance spectroscopy of wheat under different developmental periods by fuzzy cluster analysis[J].Laser Biology,1996,5(3):870-873.
[8] 朱雨杰,周学秋,严衍禄.不同灌溉条件下小麦冠层的反射光谱特征及其模糊聚类研究[J].激光生物学,1996,5(3):874-877. Zhu Y C,Zhou X Q,Yan Y L.Studies on canopies reflectance spectroscopy of wheat under different irrigational conditions by fuzzy cluster analysis[J].Laser Biology,1996,5(3):874-877.
[9] Shibayama M,Akiyama T.A spectro-radiometer for field use: Radiometric estimation for chlorophyll index of rice canopy[J].Japanese Journal of Crop Science,1986,55(4):433-438.
[10] 金林雪,李映雪,徐德福,等.小麦叶片水分及绿度特征的光谱法诊断[J].中国农业气象,2012,33(1):124-128. Jin L X,Li Y X,Xu D F,et al.Spectroscopy piagnostics of water content and greenness features in wheat leaf[J].Chinese Journal of Agrometeorology,2012,33(1):124-128.
[11] 刘小军,田永超,姚霞,等.基于高光谱的水稻叶片含水量监测研究[J].中国农业科学,2012,45(3):435-442. Liu X J,Tian Y C,Yao X,et al.Monitoring leaf water content based on Hyperspectra in rice[J].Scientia Agricultura Sinica,2012,45(3):435-442.
[12] 王进,李新建,白丽,等干旱区棉花冠层高光谱反射特征研究[J].中国农业气象,2012,33(1):114-118. Wang J,Li X J,Bai L,et al.Characteristics of reflection spectrum of cotton canopy in north Xinjiang[J].Chinese Journal of Agrometeorology,2012,33(1):114-118.
[13] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:185-228. Pu R L,Gong P.Hyperspectral remote sensing and its applications[M].Beijing:Higher Education Press,2000:185-228.
[14] 何挺,王静,程烨,等.土壤氧化铁光谱特征研究[J].地理与地理信息科学,2006,3(2):30-34. He T,Wang J,Cheng Y,et al.Study on spectral features of soil Fe2O3[J].Geography and Geo-Information Science,2006,3(2):30-34.
[1] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[2] 刘佳, 辛鑫, 刘斌, 邸凯昌, 岳宗玉, 王承安. 基于DMSP/OLS夜间灯光影像的2000—2013年鄂尔多斯市城市扩张遥感制图与驱动因子分析[J]. 国土资源遥感, 2018, 30(1): 166-172.
[3] 官晓, 周萍, 陈圣波. 基于地面实测光谱的土壤有机质含量预测[J]. 国土资源遥感, 2014, 26(2): 105-111.
[4] 马丽丽, 田淑芳, 王娜. 基于层次分析与模糊数学综合评判法的矿区生态环境评价[J]. 国土资源遥感, 2013, 25(3): 165-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发