Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (3): 48-54    DOI: 10.6046/gtzyyg.2014.03.08
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于特征点与边界信息的全自动多模态遥感图像配准方法
宋智礼
上海应用技术学院, 上海 201418
Automatic approach based on point and curve features for multimodal remote sensing image registration
SONG Zhili
Shanghai Institute of Technology, Shanghai 201418, China
全文: PDF(2493 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 多模态遥感图像在光谱成分上的巨大差异,导致点特征检测与匹配算法在该类图像配准中的正确匹配率非常低。为了提高尺度不变特征变换和加速鲁棒性特征算法在图像配准时的可靠性和鲁棒性,提出了一种多模态遥感图像配准的新方法。该方法既能利用复杂轮廓中蕴含的几何变换信息弥补点特征在多模态图像配准中的缺点,又能利用点特征所蕴含正确匹配区域的启发性信息克服边界匹配算法的不足。结果表明:该方法能够在完全无人参与的情况下,全自动地实现多模态遥感图像的配准,并且具有较高的稳健性和可信度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨可明
周玉洁
齐建伟
王林伟
刘士文
关键词 植被-不透水面-土壤(V-I-S)模型城市不透水面地表温度(LST)城市热岛相关分析    
Abstract:Due to the significant spectral difference in multimodal image registration, the rate of correctly matched feature-points calculated with point-feature detecting and matching algorithms, such as speed up Robust features,SURF, is quite low in some difficult cases. In order to solve this issue, this paper proposes a novel image registration approach with the help of point and curve features. It adopts the location information indexed by the correct matching pair of feature-points and transformation information determined by the pair of correct matching curves simultaneously. Also, the feasibility and advantages of this algorithm were all confirmed by the experiments in this paper. The results show that this method can achieve automatically the registration of the multi-modal remote sensing images in the completely unattended case and align some kinds of remote sensing images automatically. In addition, it is more robust and reliable.
Key wordsvegetation-impervious surface-soil(V-I-S)model    urban impervious surface area    land surface temperature(LST)    urban heat island    correlation analysis
收稿日期: 2013-06-24      出版日期: 2014-07-01
ZTFLH:  TP751.1  
基金资助:上海市自然科学基金项目“遥感与地理信息系统中全自动高精度图像配准新技术的研究”(编号:12ZR1431000)、上海应用技术学院科学技术发展基金项目“医学、遥感图像配准技术及其应用的研究”(编号:YJ2011-68)和085项目“机器嗅觉”(编号:405ZK124127)共同资助。
作者简介: 宋智礼(1974-),男,博士,讲师,主要研究遥感图像配准方法等。Email:zlsong@fudan.edu.cn。
引用本文:   
宋智礼. 基于特征点与边界信息的全自动多模态遥感图像配准方法[J]. 国土资源遥感, 2014, 26(3): 48-54.
SONG Zhili. Automatic approach based on point and curve features for multimodal remote sensing image registration. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 48-54.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.03.08      或      http://www.gtzyyg.com/CN/Y2014/V26/I3/48
[1] Chen S Y,Guo Q,Leung H,et al.A maximum likelihood approach to joint image registration and fusion[J].IEEE Transactions on Image Processing,2011,20(5):1363-1372.
[2] Li Y,Verma R.Multichannel image registration by feature-based information fusion[J].IEEE Transactions on Medical Imaging,2011,30(3):707-720,
[3] 董张玉,赵萍,刘殿伟,等.一种改进的小波变换融合方法及其效果评价[J].国土资源遥感,2012,24(3):44-49. Dong Z Y,Zhao P,Liu D W,et al.An improved wavelet transformation image fusion method and evaluation of its fusion result[J].Remote Sensing for Land and Resources,2012,24(3):44-49.
[4] 任金华,吴绍华,周生路,等.城市不透水面遥感研究进展[J].国土资源遥感,2012,24(4):8-15. Ren J H,Wu S H,Zhou S L,et al.Advances in remote sensing research on urban impervious surface[J].Remote Sensing for Land and Resources,2012,24(4):8-15.
[5] 周海芳,赵进.基于GPU的遥感图像配准并行程序设计与存储优化[J].计算机研究与发展,2012,49(Z1):281-286. Zhou H F,Zhao J.Parallel programming design and storage optimization of remote sensing image registration based on GPU[J].Journal of Computer Research and Development,2012,49(Zl):281-286.
[6] 韩雨,王卫卫,冯象初.基于迭代重加权的非刚性图像配准[J].自动化学报,2011,37(9):1059-1066. Han Y,Wang W W,Feng X C.Iteratively reweighted method based nonrigid image registration[J].Acta Automatica Sinica,2011,37(9):1059-1066.
[7] 支力佳,张少敏,赵大哲,等.融合多种特征点信息的最小生成树医学图像配准[J].计算机研究与发展,2011,48(3):501-507. Zhi L J,Zhang S M,Zhao D Z,et al.Minimum spanning tree fusing multi-feature point information for medical image registration[J].Journal of Computer Research and Development,2011,48(3):501-507.
[8] 肖明,胡天江,潘亮,等.一种基于点特征的异源SAR图像适配性分析方法[J].自动化学报,2012,38(12):1958-1967. Xiao M,Hu T J,Pan L,et al.A point-feature method for multi-source SAR image matching suitability analysis[J].Acta Automatica Sinica,2012,38(12):1958-1967.
[9] 李映,崔杨杨,韩晓宇.基于线特征和控制点的可见光和SAR图像配准[J].自动化学报,2012,38(12):1968-1974. Li Y,Cui Y Y,Han X Y.Optical image and SAR image registration based on linear features and control points[J].Acta Automatica Sinica,2012,38(12):1968-1974.
[10] Wong A,Clausi D A.Automatic registration of remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1483-1493.
[11] 杨德贺,陈宜金,杨溪,等.面向震害信息提取的多源遥感图像自动配准[J].国土资源遥感,2013,25(3):56-60. Yang D H,Chen Y J,Yang X,et al.Automatic registration of multi-source images for extraction of earthquake damage information[J].Remote Sensing for Land and Resources,2013,25(3):56-60.
[12] 李慧,蔺启忠,刘庆杰.基于FAST和SURF的遥感图像自动配准方法[J].国土资源遥感,2012(2):28-33. Li H,Lin Q Z,Liu Q J.An automatic registration method of remote sensing imagery based on FAST corner and SURF descriptor[J].Remote Sensing for Land and Resources,2012(2):28-33.
[13] Lowe D G.Object recognition from local scale-invariant features[C]//The Proceedings of the Seventh IEEE International Conference on Computer Vision.Kerkyra:IEEE,1999,2:1150-1157.
[14] Bay H,Ess A,Tuytelaars T,et al.Speeded-up robust features(SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359.
[15] Keller Y,Averbuch A.Multisensor image registration via implicit similarity[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(5):794-801.
[16] Chen J,Tian J,Lee N,et al.A partial intensity invariant feature descriptor for multimodal retinal image registration[J].IEEE Transactions on Biomedical Engineering,2010,57(7):1707-1718.
[17] Alajlan N,Rube I E,Kamel M S,et al.Shape retrieval using triangle-area representation and dynamic space warping[J].Pattern Recognition,2007,40(7):1911-1920.
[1] 徐嘉昕,房世波,张廷斌,朱永超,吴东,易桂花. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 国土资源遥感, 2020, 32(1): 237-246.
[2] 熊俊楠,李伟,程维明,范春捆,李进,赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[3] 江振蓝,龚振彬,潘辉,张宝玉,王婷芬. 空间自相关局部指标在城市热岛界定中的应用[J]. 国土资源遥感, 2018, 30(3): 136-142.
[4] 杨敏,杨贵军,王艳杰,张勇峰,张智宏,孙晨红. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 2018, 30(3): 213-223.
[5] 潘竟虎,董磊磊,王娜云,杨紫金. 兰西城市群热环境格局多尺度研究[J]. 国土资源遥感, 2018, 30(2): 138-146.
[6] 杨敏, 杨贵军, 陈晓宁, 张勇峰, 尤静妮. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018, 30(1): 54-62.
[7] 孙明, 谢敏, 丁美花, 许文龙, 黄思琦, 高菲. 2001—2015年间广西壮族自治区防城港市热岛效应时空变化研究[J]. 国土资源遥感, 2018, 30(1): 135-143.
[8] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
[9] 贺丽琴, 杨鹏, 景欣, 晏磊, 苏琳琳. 基于MODIS影像及不透水面积的珠江三角洲热岛效应时空分析[J]. 国土资源遥感, 2017, 29(4): 140-146.
[10] 赵菲菲, 包妮沙, 吴立新, 孙瑞. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.
[11] 孟丹, 宫辉力, 李小娟, 杨思遥. 北京7·21暴雨时空分布特征及热岛-雨岛响应关系[J]. 国土资源遥感, 2017, 29(1): 178-185.
[12] 李丽. 基于WorldView-2数据的西沙群岛遥感水深反演——以赵述岛和南岛为例[J]. 国土资源遥感, 2016, 28(4): 170-175.
[13] 荆凤, 申旭辉, 康春丽, 熊攀. 基于地震监测应用的地表温度和长波辐射数据对比分析[J]. 国土资源遥感, 2015, 27(1): 81-86.
[14] 王艳慧, 肖瑶. 北京市1989-2010年地表温度时空分异特征分析[J]. 国土资源遥感, 2014, 26(3): 146-152.
[15] 李昕瑜, 杜培军, 阿里木·赛买提. 南京市地表参数变化与热岛效应时空分析[J]. 国土资源遥感, 2014, 26(2): 177-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发