Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (3): 55-60    DOI: 10.6046/gtzyyg.2014.03.09
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
沙漠地区微波地表发射率年内变化规律与气候因子的关系分析
吴莹1,2, 王振会1,2, 翁富忠3
1. 南京信息工程大学中国气象局气溶胶-云-降水重点开放实验室, 南京 210044;
2. 南京信息工程大学 大气物理学院, 南京 210044;
3. 美国国家海洋和大气管理局环境卫星资料信息中心, 马里兰 20742
Relationship between inter-annual variations of microwave land surface emissivity and climate factors over the desert
WU Ying1,2, WANG Zhenhui1,2, WENG Fuzhong3
1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China;
3. NOAA/NESDIS/Center for Satellite Application and Research, College Park, MD 20742, USA
全文: PDF(1994 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 以塔克拉玛干沙漠为研究区域,利用2008年AMSR-E(advanced microwave scanning radiometer-earth observing system)二级亮温资料和全球资料同化系统(global data assimilation system,GDAS)的地表、大气参数产品,反演研究区晴空条件下的微波地表发射率,进而根据不同的土壤类型,分析了沙漠微波地表发射率频谱年内变化规律及其与气候因子的关系。结果表明:沙漠地表发射率与土壤类型密切相关,且不同土壤类型的发射率季节变化规律显著性不同;土壤含水量、地表温度与地表发射率的年内变化规律之间存在着显著相关性,地表发射率随土壤含水量、地表温度的增高而降低;地表植被覆盖度、植被含水量和地表粗糙度也是地表发射率的影响因子,其值均取决于土壤含水量,而土壤含水量受大气总水汽量和土壤类型的共同制约;以砂土为主的沙漠地表发射率更多受到沙漠深度的影响,随着沙漠深度的增加而减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝敏
吴虹
贾志强
黄大宁
柳艳
关震
关键词 花山姑婆山花岗岩体遥感线性构造对比分析    
Abstract:Microwave land surface emissivity of the Taklimakan Desert was retrieved based on AMSR-E (advanced microwave scanning radiometer-earth observing system) Leval 2A measurements and land surface and atmosphere products from GDAS (global data assimilation system) in 2008 under clear atmospheric conditions. Then, the spectral characteristics of the retrieved emissivity were classified and analyzed with respect to the soil types, and the relationships between desert emissivity annual variability and climate factors were also analyzed. The analyses indicate that the desert microwave emissivity and its annual variability are closely related to soil types. Moreover, there is a significant correlation between soil volume water content as well as land skin temperature and inter-annual variations of emissivity, which decreases with both of the two land surface parameters. Furthermore, vegetation coverage, canopy water content and surface roughness depending on the soil moisture are also the influencing factors of emissivity, and the soil moisture is restricted by both the atmospheric total precipitable water and the underlying soil type. Additionally,the surface emissivity of the desert mostly composed of sand observably decreases with the desert depth.
Key wordsHuashan    Guposhan    granite body    remote sensing    liner structure    compariative analysis
收稿日期: 2013-07-18      出版日期: 2014-07-01
:  P422.2  
  TP722.6  
基金资助:国家自然科学基金项目(编号:41305033,41275043和41175035)、国家“863计划”项目“国家高技术研究发展计划资助项目”(编号:2007AA061901)、江苏高校优势学科建设工程资助项目(PAPD)和南京信息工程大学校科研预研项目(编号:2012X008)共同资助。
作者简介: 吴莹(1980-),女,讲师,博士,主要从事大气探测与大气遥感方面的教学和研究。Email:wuying_nuist@163.com。
引用本文:   
吴莹, 王振会, 翁富忠. 沙漠地区微波地表发射率年内变化规律与气候因子的关系分析[J]. 国土资源遥感, 2014, 26(3): 55-60.
WU Ying, WANG Zhenhui, WENG Fuzhong. Relationship between inter-annual variations of microwave land surface emissivity and climate factors over the desert. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 55-60.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.03.09      或      https://www.gtzyyg.com/CN/Y2014/V26/I3/55
[1] Weng F,Liu Q.Satellite data assimilation in numerical weather prediction models,Part I:Forward radiative transfer and Jacobian modeling in cloudy atmospheres[J].Journal of Atmospheric Science,2003,60(21):2633-2646.
[2] Errico R M,Ohring G,Bauer P,et al.Assimilation of satellite cloud and precipitable observations in numerical weather prediction models[J].Journal of Atmospheric Science,2007,64(11):3737-3741.
[3] Njoku E G,Jackson T J,Lakshmi V,et al.Soil moisture retrieval from AMSR-E[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):215-229.
[4] Pellerin T,Wigneron J P,Calvet J C,et al.Global soil moisture retrieval from a synthetic L-band brightness temperature data set[J].Journal of Geophysical Research,2003,108(D12):4364.doi:10.1029/2002JD003086.
[5] Shi J,Chen K S,Li Q,et al.A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40:2674-2686.
[6] Wigneron J P,Calvet J C,Pellarin T,et al.Retrieving near-surface soil moisture from microwave radiometric observations:Current status and future plans[J].Remote Sensing of Environment,2003,85:489-506.
[7] Calvet J C,Wigneron J P,Mougin E,et al.Plant water content and temperature of amazon forest from satellite microwave radiometry[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(2):397-408.
[8] Prigent C,Aires F,Rossow W B.Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures[J].Journal of Geophysical Research,2003,108(D10):4310.doi:10.1029/2002JD002301.
[9] 毛克彪,施建成,李召良,等.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感,2005,17(3):14-18. Mao K B,Shi J C,Li Z L,et al.The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J].Remote Sensing for Land and Resources,2005,17(3):14-18.
[10] Kelly G,Bauer P.The use of AMSU-A surface channels to obtain surface emissivity over land,snow and ice for numerical weather prediction[C]//Proc 11th Int TOVS Study Conf.Budapest,Hungary,2000:167-179.
[11] Kelly R E,Chang A T,Tsang L,et al.A prototype AMSR-E global snow area and snow depth algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):230-242.
[12] 吴莹,王振会.微波地表发射率模型研究进展[J].国土资源遥感,2013,25(4):1-7. Wu Y,Wang Z H.Advances in the study of microwave land surface emissivity model[J].Remote Sensing for Land and Resources,2013,25(4):1-7.
[13] 吴莹,王振会.被动微波遥感反演地表发射率研究进展[J].国土资源遥感,2012,24(4):1-7. Wu Y,Wang Z H.Advances in the study of land surface emissivity retrieval from passive microwave remote sensing[J].Remote Sensing for Land and Resources,2012,24(4):1-7.
[14] 何文英,陈洪滨.中国江淮、黄淮地区陆面微波比辐射率的变化特征[J].遥感技术与应用,2009,24(3):297-303. He W Y,Chen H B.The characteristics of microwave emissivity over land of Chinese Jianghuai-Huanghuai region[J].Remote Sensing Technology and Application,2009,24(3):297-303.
[15] Karbou F,Prigent C,Eymard L,et al.Microwave land emissivity calculations using AMSU measurements[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(5):948-959.
[16] 张勇攀,蒋玲梅,邱玉宝,等.不同地物类型微波发射率特征分析[J].光谱学与光谱分析,2010,30(6):1446-1451. Zhang Y P,Jiang L M,Qiu Y B,et al.Study of the microwave emissivity characteristics over different land cover types[J].Spectroscopy and Spectral Analysis,2010,30(6):1446-1451.
[17] FAO(United Nations Food and Agriculture Organization).Soil map of the world(1:5 m scale maps and accompanying texts)[Z].France:Paris,1971-1981,1-10.
[18] State Soil Geographic(STATSGO)Data Base,National Cartography and GIS Center,United States Department of Agriculture,Fort Worth,TX[EB/OL].
[1995] .http://www.nrcs.usda.gov/technical/techtools/statsgo_db.pdf.
[19] Weng F Z,Yan B H,Grody N C.A microwave land emissivity model[J].Journal of Geophysical Research,2001,106(D17):20115-20123.
[20] FAO/STATSGO Soil Type,United Nations Food and Agriculture Organization,National Cartography and GIS Center,United States Department of Agriculture[EB/OL].
[1995] .http://www.emc.ncep.noaa.gov/mmb/gcp/sfcimg/soiltex/index.html.
[21] Wilheit T,Kummerow C D,Ferraro R.NASDA rainfall algorithms for AMSR-E[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):204-214.
[22] Wang J R,Schmugge T J.An empirical model for the complex dielectric permittivity of soils as a function of water content[J].IEEE Transactions on Geoscience Remote Sensing,1980,GE-18(4):288-295.
[23] 吴莹,Weng F Z,王振会,等.沙漠地区微波地表发射率和土壤质地关系分析[J].高原气象,2013,32(2):481-490. Wu Y,Weng F Z,Wang Z H,et al.Analysis on the relationship between microwave land surface emissivity and soil texture in desert region[J].Plateau Meteorology,2013,32(2):481-490.
[24] Dobson M C,Ulaby F T,Hallikainen M T,et al.Microwave dielectric behavior of wet Soil-Part II:Dielectric mixing models[J].IEEE Transactions on Geoscience Remote Sensing,1985,GE-23(1):35-46.
[25] Wang J R,O'Neill P E,Jackson T J,et al.Multi-frequency measurements of the effects of soil moisture,soil texture,and surface roughness[J].IEEE Transactions on Geoscience and Remote Sensing,1983,GE-21(1):44-51.
[26] Mo T,Schmugge T J.A parameterization of the effect of surface roughness on microwave emission[J].IEEE Transactions on Geoscience and Remote Sensing,1987,GE-25(4):481-486.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发