Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (4): 131-137    DOI: 10.6046/gtzyyg.2014.04.21
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于FY-3B/MWRI数据的裸土区土壤湿度反演
鲍艳松1,2, 毛飞1,2, 闵锦忠1, 王冬梅3, 严婧1
1. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044;
2. 南京信息工程大学 大气物理学院, 南京 210044;
3. 江苏省水利科学研究院, 南京 210017
Retrieval of bare soil moisture from FY-3B/MWRI data
BAO Yansong1,2, MAO Fei1,2, MIN Jinzhong1, WANG Dongmei3, YAN Jing1
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3. Jiangsu Hydraulic Research Institute, Nanjing 210017, China
全文: PDF(883 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 使用高级积分方程模型,模拟多个地表参数条件下的风云三号B星微波成像仪(FY-3B/MWRI)资料。基于模拟数据,分析地表微波辐射特性,利用粗糙地表发射率Qp模型,建立我国西部地区裸露地表土壤湿度反演模型。将该模型用于我国西部地区4个日期(2011年10月8日、10月18日、10月28日和11月8日)的土壤湿度反演,并将反演结果用实测数据进行交叉验证。结果表明: 反演土壤湿度与实测土壤湿度的决策系数R2为0.604,均方根误差为0.030 5 cm3/cm3,反演模型具有较高的反演精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阙昊懿
黄辉先
徐建闽
关键词 遥感图像道路边缘序贯相似性检测算法(SSDA)双阈值    
Abstract:This paper focuses on soil moisture retrieval study based on the measurements from the microwave radiation imager (MWRI) on board China's second-generation polar-orbiting meteorological satellite (FY-3). The advanced integral equation model (AIEM) was used to simulate FY-3B/MWRI radiance data for multiple surface parameters, and a soil moisture retrieval model is built based on the simulated radiance data. The model was used to retrieve bare soil moisture from four imageries acquired respectively on October 8th and 18th and 28th and November 8th in Northwest China. The retrieved soil moisture were evaluated by measured data. The results show that the determination coefficient between the retrieved and measured soil moistures is 0.604, the RMSE is 0.030 5 cm3/cm3, and hence the retrieved soil moisture is in good agreement with the measured data.
Key wordsremote sensing images    road edge    sequential similarity detection algorithm (SSDA)    dual-threshold
收稿日期: 2013-09-01      出版日期: 2014-09-17
:  TP79  
基金资助:国家重点基础研究发展计划“973”计划项目(编号:2013CB430101)、中国博士后科学基金项目(编号:20090461131,201003596)及江苏省高校优势学科建设工程资助项目(编号:PAPD)共同资助。
通讯作者: 闵锦忠(1965-),男,教授,博士生导师,研究方向为中小尺度数值模拟与资料同化研究。Email:minjz@nuist.edu.cn。
作者简介: 鲍艳松(1976-),男,副教授,从事卫星遥感研究。Email:ysbao@hotmail.com。
引用本文:   
鲍艳松, 毛飞, 闵锦忠, 王冬梅, 严婧. 基于FY-3B/MWRI数据的裸土区土壤湿度反演[J]. 国土资源遥感, 2014, 26(4): 131-137.
BAO Yansong, MAO Fei, MIN Jinzhong, WANG Dongmei, YAN Jing. Retrieval of bare soil moisture from FY-3B/MWRI data. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 131-137.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.04.21      或      https://www.gtzyyg.com/CN/Y2014/V26/I4/131
[1] 仝兆远,张万昌.土壤水分遥感监测的研究进展[J].水土保持通报,2007,27(4):107-113. Tong Z Y,Zhang W C.Progress of soil moisture monitoring by remote sensing[J].Bulletin of Soil and Water Conservation,2007,27(4):107-113.
[2] 郑兴明.东北地区土壤湿度被动微波遥感高精度反演方法研究[D].长春:中国科学院东北地理与农业生态研究所,2012. Zheng X M.Research on soil moisture passive microwave remote sensing inversion method in Northeast of China[D].Changchun:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,2012.
[3] Jackson T J,Le Vine D M,Swift C T,et al.Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita 92[J].Remote Sensing Environment,1995,54(1):27-37.
[4] Jackson T J,Le Vine D M,Hsu A Y,et al.Soil moisture mapping at regional scales using microwave radiometry:The southern great plains hydrology experiment[J].IEEE Transaction on Geosciences and Remote Sensing,1999,37(5):2136-2151.
[5] Jackson T J,LeVine D M.Mapping surface soil moisture using an aircraft-based passive microwave instrument:Algorithm and example[J].Journal of Hydrology,1996,184(1/2):85-99.
[6] Jackson T J.III.Measuring surface soil moisture using passive microwave remote sensing[J].Hydrological Processes,1993,7(2):139-152.
[7] 田辉,王澄海,文军,等.基于简化参数方法的蒙古干旱区土壤湿度被动微波遥感[J].地球物理学报,2012,55(2):415-427. Tian H,Wang C H,Wen J,et al.Soil moisture estimation over an arid environment in Mongolia from passive microwave remote sensing based on a simplified parameterization method[J].Chinese Journal of Geophysics,2012,55(2):415-427.
[8] Njoku E G,Li L.Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):79-93.
[9] Njoku E G,Jackson T J,Lakshmi V,et al.Soil moisture retrieval from AMSR-E[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):215-229.
[10] Koike T,Njoku E,Jackson T J,et al.Soil moisture algorithm development and validation for the ADEOS-II/AMSR[J].IEEE Transactions on Geoscience and Remote Sensing Symposium,2000,3:1253-1255.
[11] Owe M,DeJeu R,Walker J.A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1643-1654.
[12] Owe M,DeJeu R,Holmes T.Multisensor historical climatology of satellite-derived global land surface moisture[J].Journal of Geophysical Research,2008,113:1-17.
[13] De Jeu R A M.Retrieval of land surface parameters using passive microwave remote sensing[D].Amsterdam:Vrije University Amsterdam,2003.
[14] Wen J,Jackson T J,Bindlish R,et al.Retrieval of soil moisture and vegetation water content using SSM/I data over a corn and soybean region[J].Journal of Hydrometeorology,2005,6(6):854-863.
[15] Schmugge T,O'Neill P E,Wang J R.Passive microwave soil moisture research[J].IEEE Transactions on Geoscience and Remote Sensing,1986,GE-24(1):12-22.
[16] Ahmed N U.Estimating soil moisture from 6.6GHz dual polarization,and/or satellite derived vegetation index[J].International Journal of Remote Sensing,1995,16(4):687-708.
[17] Paloscia S,Macelloni G,Santi E,et al.A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1655-1661.
[18] 彭丽春,李万彪,刘辉志.FY-3A/MWRI数据反演半干旱地区土壤湿度的研究[J].北京大学学报:自然科学版,2011,47(5):797-804. Peng L C,Li W B,Liu Z H.Estimation of the soil moisture using FY-3A/MWRI Data over semiarid areas[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2011,47(5):797-804.
[19] 杨虎,施建成.FY-3微波成像仪地表参数反演研究[J].遥感技术与应用,2005,20(1):194-200. Yang H,Shi J C.On the estimation of land surface parameters by using FY-3A microwave radiometer imager(MWRI)[J].Remote Sensing Technology and Application,2005,20(1):194-200.
[20] 马媛.新疆土壤湿度的微波反演及应用研究[D].乌鲁木齐:新疆大学,2007. Ma Y.Study on soil moisture inversion and application with microwave remote sensing in Xinjiang[D].Urumchi:Xinjiang University,2007.
[21] 赵杰鹏,张显峰,包慧漪,等.基于可见光红外与被动微波遥感的土壤水分协同反演[J].红外与毫米波学报,2012,31(2):137-142,147. Zhao J P,Zhang X F,Bao H Y,et al.Monitoring land surface soil moisture:Co-inversion of visible, infrared and passive microwave sensing data[J].Journal of Infrared and Millimeter Waves,2012,31(2):137-142,147.
[22] 魏伟,任皓晨,赵军,等.基于MODIS的ATI和TVI组合法反演石羊河流域土壤含水量[J].国土资源遥感,2011,23(2):104-109. Wei W,Ren H C,Zhao J,et al.Retrieving soil moisture of shiyang river basin by ATI and TVI based on EOS/MODIS data[J].Remote Sensing For Land and Resources,2011,23(2):104-109.
[23] 杨晓峰.土壤湿度廓线综合反演试验研究[D].北京:中国气象科学研究院,2011. Yang X F.Experimental study on soil moisture profile inversion[D].Beijing:Chinese Academy of Meteorological Sciences.
[24] 陈永川,刘静,托乎提,等.新疆作物观测地段土壤农业水分常数的分布[J].安徽农业科学,2008,36(32):14210-14321. Chen Y C,Liu J,Tuo H T,et al.Distribution of soil agricultural moisture constant in crop observation area in Xinjiang Province[J].Journal of Anhui Agricultural Sciences,2008,36(32):14210-14321.
[25] Shi J C,Jiang L M,Zhang L Z,et al.A parameterized multifrequency-polarization surface emission model[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(12):2831-2841.
[26] 鲍艳松,刘良云,王纪华,等.利用ASAR图像监测土壤含水量和小麦覆盖度[J].遥感学报,2006,10(2):263-271. Bao Y S,Liu L Y,Wang J H,et al.Estimation of soil water content and wheat coverage with ASAR image[J].Journal of Remote Sensing,2006,10(2):263-271.
[27] Fung A K,Chen K S.An update on the IEM surface backscattering model[J].Geoscience and Remote Sensing Letters,IEEE,2004,1(2):75-77.
[28] WU T D,Chen K S.A reappraisal of the validity of the IEM model for backscattering from rough surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):743-753.
[29] WU T D,Chen K S,Shi J C,et al.A transition model for the flection coefficient in surface scattering[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(9):2040-2050.
[30] 施建成,蒋玲梅,张立新,等.多频率多极化地表辐射参数化模型[J].遥感学报,2006,10(4):502-514. Shi J C,Jiang L M,Zhang L X,et al.A parameterized multi-frequency-polarization surface emission model[J].Journal of Remote Sensing,2006,10(4):502-514.
[31] Shi J C,Jiang L M,Zhang L X,et al.Physically based estimation of bare-surface soil moisture with the passive radiometers[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44:3145-3153.
[32] 张婕,张文煜,王晓妍,等.半干旱地区土壤湿度变化特征[J].兰州大学学报:自然科学版,2012,48(2):57-61. Zhang J,Zhang W Y,Wang X Y,et al.Changes characteristics of soil moisture in semi-arid areas[J].Journal of Lanzhou University:Natural Sciences,2012,48(2):57-61.
[1] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[2] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[3] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[4] 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感, 2020, 32(4): 46-52.
[5] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
[6] 蔡之灵, 翁谦, 叶少珍, 简彩仁. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3): 80-89.
[7] 李宇, 肖春姣, 张洪群, 李湘眷, 陈俊. 深度卷积融合条件随机场的遥感图像语义分割[J]. 国土资源遥感, 2020, 32(3): 15-22.
[8] 叶发茂, 罗威, 苏燕飞, 赵旭青, 肖慧, 闵卫东. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019, 31(2): 32-37.
[9] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[10] 葛芸, 江顺亮, 叶发茂, 姜昌龙, 陈英, 唐祎玲. 聚合CNN特征的遥感图像检索[J]. 国土资源遥感, 2019, 31(1): 49-57.
[11] 黄巍, 黄辉先, 徐建闽, 刘嘉婷. 基于Canny边缘检测思想的改进遥感影像道路提取方法[J]. 国土资源遥感, 2019, 31(1): 65-70.
[12] 张康, 黑保琴, 李盛阳, 邵雨阳. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018, 30(4): 49-55.
[13] 杨萍, 李轶鲲, 胡玉玺, 杨树文. 融合相容粒理论的遥感图像检索[J]. 国土资源遥感, 2017, 29(4): 43-47.
[14] 丁海勇, 罗海滨, 郭瑞瑞. 基于非下采样轮廓变换与模糊理论的遥感图像增强[J]. 国土资源遥感, 2017, 29(3): 25-31.
[15] 徐金东, 倪梦莹, 童向荣, 张艳洁, 郑强. 一种基于多尺度稀疏分解的遥感图像融合新方法[J]. 国土资源遥感, 2017, 29(3): 51-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发