Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (3): 77-83    DOI: 10.6046/gtzyyg.2015.03.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于作物缺水指数的土壤含水量估算方法
虞文丹1, 张友静1,2, 郑淑倩3
1. 河海大学地球科学与工程学院, 南京 210098;
2. 河海大学水文水资源与水利工程科学国家重点实验室, 南京 210098;
3. 浙江华东测绘有限公司, 杭州 310030
Estimation of soil moisture based on crop water stress index
YU Wendan1, ZHANG Youjing1,2, ZHENG Shuqian3
1. School of Earth Sciences and Engineer, Hohai University, Nanjing 210098, China;
2. State Key Laboratory of Hydrology-Water Resource and Hydraulic Engineer, Hohai University, Nanjing 210098, China;
3. Zhejiang East China Surveying and Mapping Co. Ltd, Hangzhou 310030, China
全文: PDF(5435 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 为研究江苏省徐州市的土壤水分时空分布及动态变化,基于MODIS数据和站点气象数据,利用蒸散发双层模型和考虑土壤水分可供率的改进双层模型分别计算实际蒸散发量,利用Penman-Monteith模型计算区域潜在蒸散发量,计算获得作物缺水指数(crop water stress index,CWSI),并与2010年7月和11月的土壤相对含水量实测数据分别进行回归分析建模,得到了土壤含水量分布图。结果表明: 基于蒸散发双层模型的土壤含水量估算结果与实测值的决定系数分别为0.53和0.72,平均相对误差分别为5.89%和9.6%; 对双层模型进行改进后,土壤含水量估算结果与实测值的决定系数都为0.84,平均相对误差分别为 3.47%和6.03%,利用改进后的双层模型对土壤相对含水量进行估算效果更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程洋
童立强
郭兆成
莫源富
纪轶群
关键词 遥感资源一号02C(ZY1-02C)卫星水文地质岩溶水资源    
Abstract:In this paper, the authors calculated the amount of the actual evapotranspiration based respectively on double layer model and improved double layer model in consideration of the available water rate of soil with MODIS data and meteorological data so as to investigate the temporal and spatial distribution of soil moisture and dynamic changes in Xuzhou City, Jiangsu Province. The amount of the potential evapotranspiration was calculated by using Penman-Monteith formula. Models were built to estimate the relative content of water of Xuzhou in July and November 2010, by crop water stress index(CWSI) obtained by the actual evapotranspiration and the potential evapotranspiration. The result shows that the relative error of the estimated data based on the improved double layer model and that of the measured data are 3.47% and 6.03% respectively, with the correlation coefficient being 0.84 and 0.84, which are better than the results obtained by the model based on the double layer model, whose relative error is 5.89% and 9.6%, and whose correlation coefficient is 0.53 and 0.72.
Key wordsremote sensing    ZY1-02C satellite    hydrogeology    Karst water resources
收稿日期: 2014-05-21      出版日期: 2015-07-23
:  TP75  
基金资助:国家重点基础研究发展计划"973"计划项目"气候变化对区域水循环的影响机理研究"(编号: 2010CB951101)资助。
作者简介: 虞文丹(1990-),女,硕士研究生,主要从事地理信息系统与遥感研究。Email:yuwendan1990@163.com。
引用本文:   
虞文丹, 张友静, 郑淑倩. 基于作物缺水指数的土壤含水量估算方法[J]. 国土资源遥感, 2015, 27(3): 77-83.
YU Wendan, ZHANG Youjing, ZHENG Shuqian. Estimation of soil moisture based on crop water stress index. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 77-83.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.03.14      或      https://www.gtzyyg.com/CN/Y2015/V27/I3/77
[1] 冯蜀青,殷青军,肖建设,等.基于温度植被旱情指数的青海高寒区干旱遥感动态监测研究[J].干旱地区农业研究,2006,24(5):141-145. Feng S Q,Yin Q J,Xiao J S,et al.Monitoring drought dynamic variation based on temperature vegetation drought index in Qinghai high and cold area[J].Agricultural Research in the Arid Areas,2006,24(5):141-145.
[2] 袁国富,唐登银,罗毅,等.基于冠层温度的作物缺水研究进展[J].地球科学进展,2000,16(1):49-54. Yuan G F,Tang D Y,Luo Y,et al.Advances incanopy-temperature based crop water stress research[J].Advances in Earth Science,2000,16(1):49-54.
[3] Jackson R D,Idso S B,Reginato R J,et al.Canopy temperature as a crop water stress indicator[J].Water Resources Research,1981,17(4):1133-1138.
[4] Zhang R H.A new model for estimating crop water stress based on infrared radiation information[J].Science in China B,1986,7:776-784.
[5] 申广荣,田国良.作物缺水指数监测旱情方法研究[J].干旱地区农业研究,1998,16(1):123-128. Shen G R,Tian G L.Drought monitoring with crop water stress index[J].Agricultural Research in the Arid Areas,1998,16(1):123-128.
[6] 王纯枝,毛留喜,吕厚荃,等.基于作物缺水指数的区域旱情遥感监测[C]//中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集.北京:中国气象学会,2007. Wang C Z,Mao L X,Lv H Q,et al.Monitor regional drought based on crop water stress index[C]//Meteorological Service Construction and Agricultural Meteorological Disaster Warning Breakout of China Meteorological Society in 2007.Beijing:China Meteorological Society,2007.
[7] 宋小宁,赵英时.改进的区域缺水遥感监测方法[J].中国科学(D辑:地球科学),2006,36(2):188-194. Song X N,Zhao Y S.Improved regional drought test method[J].Science in China(Ser D:Earth Sciences),2006,36(2):188-194.
[8] 刘振华,赵英时,李笑宇,等.基于蒸散发模型的定量遥感缺水指数[J].农业工程学报,2012,28(2):114-120. Liu Z H,Zhao Y S,Li X Y,et al.Quantitative remote sensing of water deficit index based on evapotranspiration[J].Transactions of the CSAE,2012,28(2):114-120.
[9] Jackson T J,Le Vine D M,Hsu A Y,et al.Soil moisture mapping at regional scales using microwave radiometry:The Southern Great Plains Hydrology Experiment[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2136-2151.
[10] 刘钰,Pereira L S,Teixeira J L,等.参照腾发量的新定义及计算方法对比[J].水利学报,1997(6):27-33. Liu Y,Pereira L S,Teixeira J L,et al.Update definition and computation of reference evapotranspiration comparison with former method[J].Journal of Hydraulic Engineering,1997(6):27-33.
[11] 辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报,2003,7(3):233-240. Xin X Z,Tian G L,Liu Q H.A review of researches on remote sensing of land surface evapotranspiration[J].Journal of Remote Sensing,2003,7(3):233-240.
[12] James Shuttleworth W,Gurney R J.The theoretical relationship between foliage temperature and canopy resistance in sparse crops[J].Quarterly Journal of the Royal Meteorological Society,1990,116(492):497-519.
[13] Norman J M,Kustas W P,Humes K S.Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J].Agricultural and Forest Meteorology,1995,77(3):263-293.
[14] 张仁华,孙晓敏,王伟民,等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科学(D辑:地球科学),2004,34(s2):200-216. Zhang R H,Sun X M,Wang W M,et al.An operational regional scale surface fluxes of quantitative remote sensing model of two layers of basic physics[J].Science in China(Ser D:Earth Sciences),2004,34(s2):200-216.
[15] 谢贤群.遥感瞬时作物表面温度估算农田全日蒸散总量[J].环境遥感,1991,6(4):253-260. Xie X Q.Estimation of daily evapo-transpiration(ET) from one time-of-day remotely sensed canopy temperature[J].Remote Sensing of Environment China,1991,6(4):253-260.
[16] Lubczynski M W,Gurwin J.Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes-Sardon study case,Spain[J].Journal of Hydrology,2005,306(1/4):71-96.
[17] Gokmen M,Vekerdy Z,Verhoef A,et al.Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions[J].Remote Sensing of Environment,2012,121:261-274.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发