Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (4): 34-40    DOI: 10.6046/gtzyyg.2015.04.06
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
利用交叉验证的小麦LAI反演模型研究
任哲1,2, 陈怀亮3, 王连喜1,2, 李颖3, 李琪1,2
1. 南京信息工程大学江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044;
2. 南京信息 工程大学环境科学与工程学院, 南京 210044;
3. 中国气象局河南省农业气象保障与应用技术 重点实验室, 郑州 450003
Research on inversion model of wheat LAI using cross-validation
REN Zhe1,2, CHEN Huailiang3, WANG Lianxi1,2, LI Ying3, LI Qi1,2
1. Jiangsu Key Laboratory of Atmospheric Environmental Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. School of Environmental Science and Engineering of Nanjing University of Information Science and Technology, Nanjing 210044, China;
3. CMA/Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450003, China
全文: PDF(1127 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI)及三边变量参数等高光谱变量; 将上述参数与小麦LAI数据进行相关性分析,并利用交叉验证法进行多种回归分析,确定反演小麦LAI的敏感参数,选择反演模型; 最后使用敏感参数构建所有样本的小麦LAI反演模型,并比较其拟合效果。研究结果表明: 经过交叉验证的反演建模,其拟合结果的均方根误差(RMSE) 整体上较未经交叉验证反演建模结果的RMSE小; 在用敏感参数构建的回归模型中,RVI立方回归模型是用遥感数据反演小麦LAI的最优模型。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余晓霞
高建国
潘亚茹
王瑞雪
关键词 遥感阿斯哈按纳格线-环构造色调异常    
Abstract

Leaf area index (LAI) is the key parameter to signify the growth condition and canopy structure of vegetation. Inversion of LAI using remote sensing technology is always one of the hotspots and difficulties in the field of remote sensing. In this paper, the first and second order derivatives of hyperspectral data of wheat were calculated, and several vegetation indices (RVI, NDVI, EVI, DVI and MSAVI) and trilateral variable parameters were built for the analysis. The correlation analysis between the parameters and wheat LAI data was carried out, and the method of cross-validation was used for multiple regression analysis so as to determine the sensitive parameters for wheat inversion of LAI and choosing model type of inversion. At last, the inversion models of all the samples were built by using these sensitive parameters, and their imitative effects were comparatively studied. The results show that the majority of root mean square errors(RMSE)of the inverse models using cross-validation are larger than those of the models which do not use cross-validation. In addition, among all the models built by the sensitive parameters, the cubic regression model of RVI is the optimal model for inversion of wheat LAI with remote sensing data.

Key wordsremote sensing    Asiha    Annage    line-ring structure    tone anomaly
收稿日期: 2014-07-18      出版日期: 2015-07-23
:  TP751.1  
基金资助:

公益性行业(气象)科研专项"主要农作物生长动态监测与定量评价技术研究"(编号: GYHY200906022)、国家科技支撑计划项目"全球变化环境下作物产量的影响与适应监测评估技术"(编号: 2012BAH29B03)和"十二五"国家科技支撑计划重点项目"重大农业气象灾害预测预警关键技术研究"(编号: 2011BAD32B02)共同资助。

通讯作者: 王连喜(1959-),男,教授,主要从事农业气象与生态气象方面的研究。Email: wlx4533@sina.com。
作者简介: 任哲(1989-),男,硕士研究生,主要研究方向为农业遥感。Email: renzhe_za@163.com。
引用本文:   
任哲, 陈怀亮, 王连喜, 李颖, 李琪. 利用交叉验证的小麦LAI反演模型研究[J]. 国土资源遥感, 2015, 27(4): 34-40.
REN Zhe, CHEN Huailiang, WANG Lianxi, LI Ying, LI Qi. Research on inversion model of wheat LAI using cross-validation. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 34-40.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.04.06      或      https://www.gtzyyg.com/CN/Y2015/V27/I4/34

[1] Dobermann A, Pampolino M F.Indirect leaf area index measurement as a tool for characterizing rice growth at the field scale[J].Communications in Soil Science and Plant Analysis, 1995, 26(9/10):1507-1523.

[2] 黄敬峰, 王渊, 王福民, 等.油菜红边特征及其叶面积指数的高光谱估算模型[J].农业工程学报, 2006, 22(8):22-26. Huang J F, Wang Y, Wang F M, et al.Red edge characteristics and leaf area index estimation model using hyperspectral data for rape[J].Transactions of the CSAE, 2006, 22(8):22-26.

[3] Bunnik N J.The Multispectral Reflectance of Shortwave Radiation by Agricultural Crops in Relation with Their Morphological and Optical Properties[D]. Wageningen:Meded.Candbouwhoge School, 1978.

[4] 邢著荣, 冯幼贵, 李万明, 等.高光谱遥感叶面积指数(LAI)反演研究现状[J].测绘科学, 2010, 35(s1):162-164, 62. Xing Z R, Feng Y G, Li W M, et al.The research status of inversion of leaf area index with hyperspectral remote sensing[J].Science of Surveying and Mapping, 2010, 35(s1):162-164, 62.

[5] Yang F, Sun J L, Fang H L, et al.Comparison of different methods for corn LAI estimation over northeastern China[J].International Journal of Applied Earth Observation and Geoinformation, 2012, 18:462-471.

[6] Darvishzadeh R, Atzberger C, Skidmore A, et al.Mapping grassland leaf area index with airborne hyperspectral imagery:A comparison study of statistical approaches and inversion of radiative transfer models[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6):894-906.

[7] 杨贵军, 赵春江, 邢著荣, 等.基于PROBA/CHRIS遥感数据和PROSAIL模型的春小麦LAI反演[J].农业工程学报, 2011, 27(10):88-94. Yang G J, Zhao C J, Xing Z R, et al.LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral Multi-angular data and PROSAIL mode[J].Transactions of the CSAE, 2011, 27(10):88-94.

[8] Yang G J, Zhao C J, Liu Q, et al.Inversion of a radiative transfer model for estimating forest LAI from multisource and multiangular optical remote sensing data[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3):988-1000.

[9] Schlerf M, Atzberger C.Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data[J].Remote Sensing of Environment, 2006, 100(3):281-294.

[10] 陈雪洋, 蒙继华, 朱建军, 等.冬小麦叶面积指数的高光谱估算模型研究[J].测绘科学, 2012, 37(5):141-144. Chen X Y, Meng J H, Zhu J J, et al.Hyperspectral estimation models for leaf area index of winter wheat[J].Science of Surveying and Mapping, 2012, 37(5):141-144.

[11] Nguyen H T, Lee B W.Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J].European Journal of Agronomy, 2006, 24(4):349-356.

[12] Mauser W, Bach H. Imaging Spectroscopy in Hydrology and Agriculture Determination of Model Parameters[M].Dordrecht, Netherlands:Kluwer Academic Publishing, 1995:261-283.

[13] 刘东升, 李淑敏.北京地区冬小麦冠层光谱数据与叶面积指数统计关系研究[J].国土资源遥感, 2008, 20(4):32-34, 42.doi:10.6046/gtzyyg.2008.04.08. Liu D S, Li S M.Statistical relationship between LAI indices and canopy spectral data of winter wheat in Beijing area[J].Remote Sensing for Land and Resources, 2008, 20(4):32-34, 42.doi:10.6046/gtzyyg.2008.04.08.

[14] 侯学会, 牛铮, 黄妮, 等.小麦生物量和真实叶面积指数的高光谱遥感估算模型[J].国土资源遥感, 2012, 24(4):30-35.doi:10.6046/gtzyyg.2012.04.06. Hou X H, Niu Z, Huang N, et al.The hyperspectral remote sensing estimation models of total biomass and true LAI of wheat[J].Remote Sensing for Land and Resources, 2012, 24(4):30-35.doi:10.6046/gtzyyg.2012.04.06.

[15] 王秀珍, 黄敬峰, 李云梅, 等.水稻叶面积指数的高光谱遥感估算模型[J].遥感学报, 2004, 8(1):81-88. Wang X Z, Huang J F, Li Y M, et al.The study on hyperspectral remote sensing estimation models about LAI of rice[J].Journal of Remote Sensing, 2004, 8(1):81-88.

[16] Tsai F, Philpot W.Derivative analysis of hyperspectral data[J].Remote Sensing of Environment, 1998, 66(1):41-51.

[17] Jordan C F.Derivation of leaf-area index from quality of light on the forest floor[J].Ecology, 1969, 50(4):663-666.

[18] Rouse J W, Haas R H, Schell J A, et al.Monitoring vegetation systems in the Great Plains with ERTS[C]//Proceedings of Third ERTS Symposium.Greenbelt:NASA SP-351, 1973, 1:309-317.

[19] Liu H Q, Huete A.A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J].IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):457-465.

[20] Richardson A J, Wiegand C L.Distinguishing vegetation from soil background information[J].Photogrammetric Engineering and Remote Sensing, 1977, 43(12):1541-1552.

[21] Qi J, Chehbouni A, Huete A R, et al.A Modified soil adjusted vegetation index[J].Remote Sensing of Environment, 1994, 48(2):119-126.

[22] 王秀珍, 王人潮, 黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报, 2002, 18(1):9-13. Wang X Z, Wang R C, Huang J F.Derivative spectrum remote sensing and Its application in measurement of rice agronomic parameters of rice[J].Transactions of the CSAE, 2002, 18(1):9-13.

[23] 谭倩, 赵永超, 童庆禧, 等.植被光谱维特征提取模型[J].遥感信息, 2001(1):14-18. Tan Q, Zhao Y C, Tong Q X, et al.Vegetation spectral feature extraction model[J].Remote Sensing Information, 2001(1):14-18.

[24] Kohavi R.A study of cross-validation and bootstrap for accuracy estimation and model selection[J].Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995, 2(12):1137-1143.

[25] 范永东.模型选择中的交叉验证方法综述[D].太原:山西大学, 2013. Fan Y D.A Summary of Cross-Validation in Model Selection[D].Taiyuan:Shanxi University, 2013.

[26] 陈拉, 黄敬峰, 王秀珍.不同传感器的模拟植被指数对水稻叶面积指数的估测精度和敏感性分析[J].遥感学报, 2008, 12(1):143-151. Chen L, Huang J F, Wang X Z.Estimating accuracies and sensitivity analysis of regression models fitted by simulated vegetation indices of different sensors to rice LAI[J].Journal of Remote Sensing, 2008, 12(1):143-151.

[27] 权文婷, 王钊.冬小麦种植面积遥感提取方法研究[J].国土资源遥感, 2013, 25(4):8-15.doi:10.6046/gtzyyg.2013.04.02. Quan W T, Wang Z.Researches on the extraction of winter wheat planting area using remote sensing method[J].Remote Sensing for Land and Resources, 2013, 25(4):8-15.doi:10.6046/gtzyyg.2013.04.02.

[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发