Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (4): 85-92    DOI: 10.6046/gtzyyg.2015.04.14
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
遥感技术在境外地质调查中的应用——以津巴布韦大岩墙为例
付长亮1, 杨清华1, 姜琦刚2, 王梦飞1, 蒋校1
1. 中国国土资源航空物探遥感中心, 北京 100083;
2. 吉林大学地球探测科学与技术学院, 长春 130026
Application of remote sensing technique to geological survey abroad: A case study of Great Dyke,Zimbabwe
FU Changliang1, YANG Qinghua1, JIANG Qigang2, WANG Mengfei1, JIANG Xiao1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resouces, Beijing 100083, China;
2. College of Geoexploration of Science and Technology, Jilin University, Changchun 130026, China
全文: PDF(9050 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

津巴布韦大岩墙(简称"大岩墙")由形成于25亿a前的镁铁质-超镁铁质杂岩构成,盛产铂、钯、金、铬、镍、铜等矿产资源,是我国境外地质矿产资源勘查的重点地区之一。为适应我国矿产资源勘查开发"走出去"战略的需要,为大岩墙地区基础地质研究和找矿勘查快速提供基础资料,利用ETM+卫星数据对大岩墙的几何要素和地质特征进行了系统解译,从遥感地质角度对大岩墙的岩浆房划分方案进行了验证; 利用ZY-1 02C高分辨率卫星数据对塞卢奎次岩浆房的形态、岩性、内部构造及矿业活动进行了详细解译和分析,提出其东西两侧围岩的不同是导致其变形强度差异的重要原因,超镁铁质岩层应是寻找铬铁矿的主要岩层; 并探讨了遥感技术在境外地质矿产勘查领域的"五尺度"工作方法,为遥感技术在境外地质调查中的应用奠定了技术基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵少华
王桥
游代安
王中挺
朱利
万华伟
关键词 水华水质气溶胶颗粒物生物多样性    
Abstract

The Great Dyke in Zimbabwe, which possesses abundant platinum, palladium, gold, chromium, nickel, copper and some other resources, is a major intrusion of mafic and ultramafic rocks formed at 2.5 Ga and one of the key regions for mineral exploration abroad. In order to attain the aim of "going out" for China's mineral exploration and provide basic geological information of geological survey and mineral exploration in the area of the Great dyke, the authors carried out the systematic interpretation of geometric elements and geological characteristics of the Great Dyke in Zimbabwe based on the ETM+ data and verified the division of the magma chamber of the Dyke. Combined with the ZY-1 02C high spatial resolution satellite data, the authors identified and interpreted the shape, lithology, interior structures and mining activities of the Selukwe Subchamber. The results achieved show that, because of the difference between the west and east host rocks, the Selukwe Subchamber underwent deformations of different intensities. The ultramafic layers should be regarded as the major layers for the chromite exploration. Furthermore, the authors have discussed the method of "five scales" of the remote sensing technique in the geological survey abroad and provided the technical support for the remote sensing application.

Key wordswater bloom    water quality    aerosol optical depth    particular matter    biodiversity
收稿日期: 2014-11-12      出版日期: 2015-07-23
:  TP79  
基金资助:

国土资源部国外矿产资源风险勘查基金项目"全球地质矿产与资源环境卫星遥感'一张图'工程"(编号: 科[2010]D2-02、科[2011]D2-02、科[2012]D2-02)和中国地质调查局地质调查项目"非洲与拉丁美洲重要成矿带遥感地质解译与战略选区研究"(编号: 1212010913005)共同资助。

通讯作者: 杨清华(1964-),男,博士,教授级高级工程师,长期从事遥感技术研究与应用工作。Email: 466064295@qq.com。
作者简介: 付长亮(1983-),男,硕士,工程师,主要从事遥感地质研究与应用工作。Email: fu_chliang@sina.com。
引用本文:   
付长亮, 杨清华, 姜琦刚, 王梦飞, 蒋校. 遥感技术在境外地质调查中的应用——以津巴布韦大岩墙为例[J]. 国土资源遥感, 2015, 27(4): 85-92.
FU Changliang, YANG Qinghua, JIANG Qigang, WANG Mengfei, JIANG Xiao. Application of remote sensing technique to geological survey abroad: A case study of Great Dyke,Zimbabwe. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 85-92.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.04.14      或      https://www.gtzyyg.com/CN/Y2015/V27/I4/85
[1] 肖成东, 段焕春, 王道忠, 等.津巴布韦Rutala铬铁矿地质特征及成矿预测[G]//陈江.非洲地质经济:纪念天津华北地质勘查局"走出去"10周年论文集.北京:地质出版社, 2009:106-110. Xiao C D, Duan H C, Wang D Z, et al.The Rutala chromite deposit and the prospecting forecast in Zimbabwe[G]//Chen J.The Africa Geological Economy:Proceedings in the Memory of the 10th Anniversary of "Going out" Project which Set Up by the North China Geological Survey of Tianjin.Beijing:Geological Publishing House, 2009:106-110.
[2] 中国地质调查局发展研究中心.全球矿产资源信息系统数据库建设之三.非洲卷:马达加斯加、津巴布韦[M].北京:地质出版社, 2006:109-156. Development and Research Center of China Geological Survey.The No.3 Database Establishment of the Global Mineral Resources Information System.Africa:Madagascar, Zimbabwe[M].Beijing:Geological Publishing House, 2006:109-156.
[3] Worst B G.The differentiation and structure of the Great Dyke of Southern Rhodesia[J].Transactions on Geological Society South Africa, 1958, 61:283-354.
[4] Wilson A H, Prendergast M D.The Great Dyke of Zimbabwe I:Tectonic setting, stratigraphy, petrology, structure, emplacement and crystallization[G]//Prendergast M D, Jones M J, (Eds.).Magmatic Sulphides-the Zimbabwe Volume.London:Institute of Mining and Metallurgy, 1989:l-20.
[5] Wilson A H, Murahwi C Z, Coghill B.Stratigraphy, geochemistry and platinum group element mineralisation of the central zone of the Selukwe Subchamber of the Great Dyke, Zimbabwe[J].Journal of African Earth Sciences, 2000, 30(4):833-853.
[6] Wilson A H.The great dyke of zimbabwe[G]//Cawthorn R G, (Ed.).Layered Intrusions.Amsterdam:Elsevier Science BV, 1996:365-402.
[7] Hamilton J.Sr isotope and trace element studies of the Great Dyke and Bushveld mafic phase and their relation to early Proterozoic magma genesis in southern Africa[J].Journal of Petrology, 1977, 18(1):24-52.
[8] Mukasa S B, Wilson A H, Carlson R W.A multielement geochronologic study of the Great Dyke, Zimbabwe:Significance of the robust and reset ages[J].Earth and Planetary Science Letters, 1998, 164(1/2):353-369.
[9] Nebel O, Mezger K.Timing of thermal stabilization of the Zimbabwe Craton deduced from high-precision Rb-Sr chronology, Great Dyke[J].Precambrian Research, 2008, 164(3/4):227-232.
[10] Stubbs H M, Hall R P, Hughes D J, et al.Evidence for a high Mg andesitic parental magma to the East and West satellite dykes of the Great Dyke, Zimbabwe:A comparison with the continental tholeiitic Mashonaland sills[J].Journal of African Earth Sciences, 1999, 28(2):325-336.
[11] Naldrett A J, Wilson A H.Horizontal and vertical variations in noble-metal distribution in the Great Dyke of Zimbabwe:A model for the origin of the PGE mineralization by fractional segregation of sulfide[J].Chemical Geology, 1990, 88(3/4):279-300.
[12] 曲红军, 窦伟, 李科, 等.津巴布韦地质背景与优势矿产资源简介[J].四川地质学报, 2012, 32(s1):231-237. Qu H J, Du W, Li K, et al.The introduction of geological background and regnant mineral resources in Zimbabwe[J].Acta Geologica Sichuan, 2012, 32(s1):231-237.
[13] 张明云, 苏俊亮, 孙国峰.津巴布韦大岩墙Darwendale次岩浆房铂族元素成矿分布和成矿机制探讨[J].资源调查与环境, 2007, 28(4):263-268. Zhang M Y, Su J L, Sun G F.Metallogenic distribution and mechanism of platinum group elements in the Darwendale subchamber of the Great Dyke, Zimbabwe[J].Resources Survey and Environment, 2007, 28(4):263-268.
[14] Zhao G X, He F Q, Dai X F, et al.Ultra-low density geochemical mapping in Zimbabwe[J].Journal of Geochemical Exploration, 2014, 144:552-571.
[15] 王庆文.津巴布韦大岩墙红土型铬铁矿地质特征与找矿标志[J].工程实录:建筑与发展, 2012(9):73-74. Wang Q W.Geological features and prospecting criteria of lateritic chromite of the Great Dyke, Zimbabwe[J].Gong Cheng Shi Lu:Jiang Zhu Yu Fa Zhan, 2012(9):73-74.
[16] 赵声贵, 陈元初.津巴布韦大岩墙铂族金属资源开发现状[J].贵金属, 2011, 32(1):72-75. Zhao S G, Chen Y C.Development status of PGM resources in Zimbabwe's Great Dyke[J].Precious Metals, 2011, 32(1):72-75.
[17] 王庆文.津巴布韦古鲁韦地区镍矿床地质特征及成因探讨[J].吉林地质, 2013, 32(1):46-50. Wang Q W.Geological features and genesis of Guluwei nickel deposit, Zimbabwe[J].Jilin Geology, 2013, 32(1):46-50.
[18] 楚旭春, 范本贤.非洲地质概况[M].北京:地图出版社, 1982. Chu X C, Fan B X.Africa Geological Introduction[M].Beijing:Map Publishing House, 1982.
[19] Armstrong R, Wilson A H.A SHRIMP U-Pb study of zircons from the layered sequence of the Great Dyke, Zimbabwe, and a granitoid anatectic dyke[J].Earth and Planetary Science Letters, 2000, 180(1/2):1-12.
[20] 王道忠, 邵长亮.津巴布韦区域矿产地质特征[G]//陈江.非洲地质经济:纪念天津华北地质勘查局"走出去"10周年论文集.北京:地质出版社, 2009:100-105. Wang D Z, Shao C L.Geological character of mineral area in Zimbabwe[G]//Chen J.The Africa geological economy:Proceedings in the memory of the 10th anniversary of "Going out" project which set up by the North China geological survey of Tianjin.Beijing:Geological Publishing House, 2009:100-105.
[21] 王润生, 熊盛青, 聂洪峰, 等.遥感地质勘查技术与应用研究[J].地质学报, 2011, 85(11):1699-1743. Wang R S, Xiong S Q, Nie H F, et al.Remote sensing technology and its application in geological exploration[J].Acta Geologica Sinica, 2011, 85(11):1699-1743.
[22] 杨建民, 张玉君, 姚佛军.利用ETM+遥感技术进行尾亚杂岩体的岩性识别[J].岩石学报, 2007, 23(10):2397-2402. Yang J M, Zhang Y J, Yao F J.Lithology identification of the Weiya complex by means of ETM+ remote sensing[J].Acta Petrologica Sinica, 2007, 23(10):2397-2402.
[23] 杨日红, 陈秀法, 赵宏军, 等.遥感技术在格陵兰岛西南部费斯肯纳色特一带找矿中的应用[J].地质与勘探, 2013, 49(4):751-759. Yang R H, Chen X F, Zhao H J, et al.Application of remote sensing technique to the prospecting in the Fiskenasset region of southwest Greenland[J].Geology and Exploration, 2013, 49(4):751-759.
[24] 杨日红, 陈秀法, 李志忠.基于遥感示矿信息的秘鲁阿雷基帕省南部斑岩铜矿遥感综合评价[J].遥感信息, 2013(2):35-41, 46. Yang R H, Chen X F, Li Z Z.RS comprehensive evaluation for porphyry copper in south of Arequipa province of Peru based on RS mine-indicating information[J].Remote Sensing Information, 2013(2):35-41, 46.
[25] 杨日红, 李志忠, 陈秀法.ASTER数据的斑岩铜矿典型蚀变矿物组合信息提取方法——以秘鲁南部阿雷基帕省斑岩铜矿区为例[J].地球信息科学学报, 2012, 14(3):411-418. Yang R H, Li Z Z, Chen X F.Information Extraction of typical alteration mineral assemblage in Porphyry Copper using ASTER satellite data:Arequipa Province of South Peru[J].Journal of Geo-Information Science, 2012, 14(3):411-418.
[26] 杨清华, 姜琦刚, 付长亮.全球地质矿产与资源环境卫星遥感"一张图"工程成果报告[R].北京:中国国土资源航空物探遥感中心, 2014. Yang Q H, Jiang Q G, Fu C L.The Report of "One Map" Project of Satellite Remote Sensing of the Global Geological Mineral and Resource Environment[R].Beijing:China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, 2014.
[27] 杨清华, 姜琦刚, 付长亮.非洲与拉丁美洲重要成矿带遥感地质解译与战略选区研究成果报告[R].北京:中国国土资源航空物探遥感中心, 2010. Yang Q H, Jiang Q G, Fu C L.The Research Report of Remote Sensing Geological Interpretation and Strategy Selection of the Important Metallogenic Belt in Africa and Latin America[R].Beijing:China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, 2010.
[28] 杨日红, 付长亮.阿根廷西北部地区地质矿产遥感解译研究成果报告[R].北京:中国国土资源航空物探遥感中心, 2010. Yang R H, Fu C L.The Research Report of Remote Sensing Interpretation of Geology and Mineral in the Northwest, Argentina[R].Beijing:China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, 2010.
[29] 杨金中, 孙延贵, 秦绪文, 等.高分辨率遥感地质调查[M].北京:测绘出版社, 2013. Yang J Z, Sun Y G, Qin X W, et al.High Resolution Remote Sensing Technology on Geological Survey[M].Beijing:Surveying and Mapping Press, 2013.
[1] 陈洁, 张立福, 张琳珊, 张红明, 童庆禧. 紫外-可见光水质参数在线监测技术研究进展[J]. 自然资源遥感, 2021, 33(4): 1-9.
[2] 韦耿, 侯钰俏, 查勇. 新冠疫情影响下武汉市气溶胶类型变化分析[J]. 自然资源遥感, 2021, 33(3): 238-245.
[3] 孟清, 白红英, 赵婷, 郭少壮, 齐贵增. 秦岭山地对气溶胶的生态屏障效应[J]. 国土资源遥感, 2021, 33(1): 240-248.
[4] 施益强, 邓秋琴, 吴君, 王坚. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 32(1): 106-114.
[5] 李恺霖, 张春桂, 廖廓, 李丽纯, 王宏. 福建省空气清新度卫星遥感监测[J]. 国土资源遥感, 2019, 31(4): 151-158.
[6] 郑凯端, 陈健, 周杰, 高绍鑫. 长三角地区一次严重雾霾事件的多源遥感监测研究[J]. 国土资源遥感, 2018, 30(1): 224-232.
[7] 张明明, 程东兵, 齐建华, 胡建春, 罗晶. 基于卫星遥感的池州市气溶胶光学厚度时空分布[J]. 国土资源遥感, 2017, 29(4): 147-155.
[8] 周嘉源, 施润和. 基于GIOVANNI的我国主要城市与西部地区2000—2014年气溶胶光学厚度的对比[J]. 国土资源遥感, 2017, 29(3): 143-148.
[9] 曹永兴, 薛志航. 基于高分辨率影像的城市地区气溶胶反演研究述评[J]. 国土资源遥感, 2016, 28(3): 1-6.
[10] 贺军亮, 张淑媛, 李佳, 查勇. 基于MODIS的城市大气颗粒物污染指数研究[J]. 国土资源遥感, 2016, 28(2): 126-131.
[11] 杨娅楠, 王金亮, 陈光杰, 习晓环, 王成. 抚仙湖流域土地利用格局与水质变化关系[J]. 国土资源遥感, 2016, 28(1): 159-165.
[12] 赵少华, 王桥, 游代安, 王中挺, 朱利, 万华伟. 高分辨率卫星在环境保护领域中的应用[J]. 国土资源遥感, 2015, 27(4): 1-7.
[13] 吴传庆, 殷守敬, 朱利, 马万栋, 吴迪. 低空间分辨率遥感数据亚像元级水华面积提取方法[J]. 国土资源遥感, 2015, 27(3): 47-51.
[14] 佃袁勇, 方圣辉, 徐永荣. 一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感, 2015, 27(2): 22-28.
[15] 范东福, 杨书运, 吴必文, 范东勤, 王俊, 江波, 陈晓龙. 基于AOD数据的秸秆焚烧监测[J]. 国土资源遥感, 2015, 27(2): 133-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发