Please wait a minute...
国土资源遥感  2016, Vol. 28 Issue (1): 22-27    DOI: 10.6046/gtzyyg.2016.01.04
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于PCA的变化向量分析法遥感影像变化检测
黄维1,2, 黄进良1, 王立辉1, 胡砚霞1,2, 韩鹏鹏1,2
1. 中国科学院测量与地球物理研究所, 武汉 430077;
2. 中国科学院大学, 北京 100049
Remote sensing image change detection based on change vector analysis of PCA component
HUANG Wei1,2, HUANG Jinliang1, WANG Lihui1, HU Yanxia1,2, HAN Pengpeng1,2
1. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(9044 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为实现对土地覆盖变化的遥感监测,研究了一种基于不同年份单时相遥感数据提取差异影像、自动确定变化阈值提取变化区域的新方法。以南通市Landsat8 OLI影像为例,对2期影像分别进行主成分分析(principal component analysis, PCA);取前3个主分量进行变化向量分析(change vector analysis, CVA),构造变化检测差异影像,并与传统PCA法和CVA法构造的差异影像进行对比;对3景差异影像分别用传统全局阈值法和局部最小错分概率法自动确定阈值,分别提取变化区域,得到6景变化区域图。利用目视解译样点进行精度评价的结果表明,改进后的基于PCA的CVA法提取的变化区域总体精度可达92.78%,Kappa系数可达0.8426,证明使用该方法可有效地进行不同年份单时相遥感数据的变化检测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田绍鸿
张显峰
关键词 天绘一号(TH-1)随机森林特征选择土地覆盖分类干旱区    
Abstract

In order to monitor the change of land cover with remote sensing technology, the authors studied a method which is based on single-temporal remote sensing image in different years for extracting differences between the images and determining the change threshold automatically to extract the change area. The research took Landsat8 OLI images of Nantong City as an example. Principal component analysis (PCA) was carried out respectively on two images. After the PCA transformation, the first three components were operated based on change vector analysis (CVA) to get the difference image for change detection, which was compared with the extraction results based on the traditional PCA method and CVA method. Overall minimum error probability threshold determination method and local minimum error probability method were utilized to automatically determine the threshold of the three difference images and to get six change area images. The accuracy was evaluated by visual interpretation, and the results show that the overall accuracy of the new method can reach 92.78%, with kappa coefficient up to 0.8426. This method is proved to be feasible and effective for extracting change area by single-temporal remote sensing image in different years.

Key wordsTH-1    random forests    feature selection    land-cover classification    arid regions
收稿日期: 2014-09-15      出版日期: 2015-11-27
ZTFLH:  TP751.1  
基金资助:

中科院战略性先导科技专项专题"应对气候变化的碳收支认证及相关问题"(编号:XDA05050107)资助。

通讯作者: 黄进良(1966-),男,研究员,博士生导师,主要从事3S技术在资源环境中的应用研究。Email:hjl@whigg.ac.cn。     E-mail: hjl@whigg.ac.cn
作者简介: 黄维(1990-),女,硕士研究生,主要研究方向为遥感技术在资源环境中的应用。Email:vivian090414@sina.com。
引用本文:   
黄维, 黄进良, 王立辉, 胡砚霞, 韩鹏鹏. 基于PCA的变化向量分析法遥感影像变化检测[J]. 国土资源遥感, 2016, 28(1): 22-27.
HUANG Wei, HUANG Jinliang, WANG Lihui, HU Yanxia, HAN Pengpeng. Remote sensing image change detection based on change vector analysis of PCA component. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 22-27.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.01.04      或      http://www.gtzyyg.com/CN/Y2016/V28/I1/22

[1] 李德仁.利用遥感影像进行变化检测[J].武汉大学学报:信息科学版,2003,28(s1):7-12. Li D R.Change detection from remote sensing images[J].Geomatics and Information Science of Wuhan University,2003,28(s1):7-12.

[2] 马建文,田国良,王长耀,等.遥感变化检测技术发展综述[J].地球科学进展,2004,19(2):192-196. Ma J W,Tian G L,Wang C Y,et al.Review of the development of remote sensing change detection technology[J].Advance in Earth Sciences,2004,19(2):192-196.

[3] 马云飞,李宏.遥感变化检测技术方法综述[J].测绘与空间地理信息,2014,37(1):132-134. Ma Y F,Li H.Review on the methods of change detection techniques using remotely-sensed data[J].Geomatics and Spatial Information Technology,2014,37(1):132-134.

[4] 黄亮,左小清,於雪琴.遥感影像变化检测方法探讨[J].测绘科学,2013,38(4):203-206. Huang L,Zuo X Q,Yu X Q.Review on change detection methods of remote sensing images[J].Science of Surveying and Mapping,2013,38(4):203-206.

[5] 陈宇,杜培军,唐伟成,等.基于BJ-1小卫星遥感数据的矿区土地覆盖变化检测[J].国土资源遥感,2011,23(3):146-150.doi:10.6046/gtzyyg.2011.03.26. Chen Y,Du P J,Tang W C,et al.Land cover change detection in coal mining area using BJ-1 small satellite remote sensing data[J].Remote Sensing for Land and Resources,2011,23(3):146-150.doi:10.6046/gtzyyg.2011.03.26.

[6] 莫德林,刘克江,曹彬才,等.基于主成分分析的遥感图像变化检测[J].影像技术,2013(5):53-56. Mo D L,Liu K J,Cao B C,et al.Remote sensing image change detection based on principal component analysis[J].Image Technology,2013(5):53-56.

[7] 陈晋,何春阳,史培军,等.基于变化向量分析的土地利用/覆盖变化动态监测(Ⅰ)——变化阈值的确定方法[J].遥感学报,2001,5(4):259-266,323. Chen J,He C Y,Shi P J,et al.Land use/cover change detection with change vector analysis(CVA):Change magnitude threshold determination[J].Journal of Remote Sensing,2001,5(4):259-266,323.

[8] 廖明生,朱攀,龚健雅.基于典型相关分析的多元变化检测[J].遥感学报,2000,4(3):197-201,246. Liao M S,Zhu P,Gong J Y.Multivariate change detection Based on canonical transformation[J].Journal of Remote Sensing,2000,4(3):197-201,246.

[9] 魏立飞.基于随机场模型的遥感影像变化检测方法研究[D].武汉:武汉大学,2011. Wei L F.The Research of the Remote Sensing Image Change Detection Based on Random Fields[D].Wuhan:Wuhan University,2011.

[10] Byrne G F,Crapper P F,Mayo K K.Monitoring land-cover change by principal component analysis of multitemporal landsat data[J].Remote Sensing of Environment,1980,10(3):175-184.

[11] 孙家柄.遥感原理与应用[M].武汉:武汉大学出版社,2009. Sun J B.Principles and Applications of Remote Sensing[M].Wuhan:Wuhan University Press,2009.

[12] 冯德俊,李永树,兰燕.基于主成分变换的动态监测变化信息自动发现[J].计算机工程与应用,2004,40(36):199-202. Feng D J,Li Y S,Lan Y.The automatic detection methods of changing information for dynamic monitoring by principal component transform[J].Computer Engineering and Applications,2004,40(36):199-202.

[13] 贺奋琴,何政伟,胡振琪,等.改进的主成分分析法自动发现土地覆盖变化[J].成都理工大学学报:自然科学版,2007,34(1):92-96. He F Q,He Z W,Hu Z Q,et al.Automatic detection of land cover change based on modified principal component analysis method[J].Journal of Chengdu University of Technology:Science and Technology Edition,2007,34(1):92-96.

[14] Malila W A.Change vector analysis:An approach for detecting forest changes with Landsat[C]//Proceedings of Machine Processing of Remote Sensing Data Symposium.West Lafayette,Indiana:Purdue University,1980.

[15] 林克正,班守峰,张玉双.一种基于变化向量分析的变化检测方法[J].哈尔滨理工大学学报,2008,13(4):47-49. Lin K Z,Ban S F,Zhang Y S.A change detection based on change vector analysis[J].Journal of Harbin University of Science and Technology,2008,13(4):47-49.

[16] 李攀.基于CVA的植被覆盖度变化信息提取方法研究[D].北京:首都师范大学,2011. Li P.The Study on Change Detection of Vegetation Coverage Based on Change Vector Analysis[D].Beijing:Capital Normal University,2011.

[17] 王丽云,李艳,汪禹芹.基于对象变化矢量分析的土地利用变化检测方法研究[J].地球信息科学学报,2014,16(2):307-313. Wang L Y,Li Y,Wang Y Q.Research on land use change detection based on an object-oriented change vector analysis method[J].Journal of Geo-information Science,2014,16(2):307-313.

[18] 邓小炼.基于变化矢量分析的土地利用变化检测方法研究[D].北京:中国科学院研究生院遥感应用研究所,2006. Deng X L.Researches on Land Use Change Detection Based on Change Vector Analysis Method[D].Beijing:Institute of Remote Sensing Applications,Chinese Academy of Sciences,2006.

[19] 曾子芳.基于变化矢量分析法的遥感影像土地利用变化检测研究[D].重庆:重庆交通大学,2013. Zeng Z F.Change Detection Research for Remote Sensing Image Land Use Based on the Change Vector Analysis Method[D].Chongqing:Chongqing Jiaotong University,2013.

[20] Edwards T C Jr,Moisen G G,Cutler D R.Assessing map accuracy in a remotely sensed,ecoregion-scale cover map[J].Remote Sensing of Environment,1998,63(1):73-83.

[1] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
[2] 鹿丰玲, 巩在武. 基于随机森林算法构建云-云阴影-水体掩模[J]. 国土资源遥感, 2016, 28(3): 73-79.
[3] 田绍鸿, 张显峰. 采用随机森林法的天绘数据干旱区城市土地覆盖分类[J]. 国土资源遥感, 2016, 28(1): 43-49.
[4] 杨耘, 徐丽, 颜佩丽. 条件随机场框架下基于随机森林的城市土地利用/覆盖遥感分类[J]. 国土资源遥感, 2014, 26(4): 51-55.
[5] 张修远, 刘修国. 基于随机森林算法的高维模糊分类研究[J]. 国土资源遥感, 2014, 26(2): 87-92.
[6] 李晓明, 杨劲松, 余美, 杨奇勇, 刘梅先. 基于电磁感应的干旱区土壤盐渍化定量遥感研究[J]. 国土资源遥感, 2012, 24(1): 53-58.
[7] 朱刚, 高会军, 曾光, 金谋顺. 西北内陆干旱区河流绿色走廊湿地景观格局变化及其生态效应研究—以车尔臣河下游为例[J]. 国土资源遥感, 2010, 22(s1): 219-223.
[8] 赵德刚, 占玉林, 刘翔, 刘成林, 庄大方. 基于波段选择的MODIS全国土地覆盖分类[J]. 国土资源遥感, 2010, 22(3): 108-113.
[9] 谢酬, 万紫, 徐茂松, 夏忠胜, 张风丽. 多时相全极化SAR数据融合方法与土地覆盖分类研究[J]. 国土资源遥感, 2010, 22(3): 120-124.
[10] 吴波, 朱勤东, 高海燕, 周小成. 面向对象影像分类中基于最大化互信息的特征选择[J]. 国土资源遥感, 2009, 21(3): 30-34.
[11] 王飞跃, 王俊锋, 吴军虎, 万余庆. 西部干旱区卫星雷达遥感找水试验研究[J]. 国土资源遥感, 2000, 12(4): 14-18,27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发