Please wait a minute...
国土资源遥感  2016, Vol. 28 Issue (1): 43-49    DOI: 10.6046/gtzyyg.2016.01.07
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
采用随机森林法的天绘数据干旱区城市土地覆盖分类
田绍鸿, 张显峰
北京大学遥感与地理信息系统研究所, 北京 100871
Random forest classification of land cover information of urban areas in arid regions based on TH-1 data
TIAN Shaohong, ZHANG Xianfeng
Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China
全文: PDF(7800 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于天绘一号(TH-1,或称MS-1)卫星多光谱数据,采用随机森林分类方法(random forests classification,RFC)对位于中亚干旱区的我国新疆维吾尔族自治区阿勒泰地区北屯市及周边区域的土地覆盖进行了分类研究。针对北屯市不透水层与裸土混杂的情况,将纹理特征与植被信息构建最优组合,建立有效的RFC分类器,提高对易混淆土地覆盖类型的分类识别精度。结果表明,采用RFC的分类精度高于最大似然法分类结果,总体分类精度提高了近10%。经过优化选择的特征组合在对干旱区中小城市土地覆盖进行分类时表现良好,能得到较高精度的分类结果,可满足新疆中小城市发展规划对土地覆盖信息的需求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨显华
黄洁
田立
刘智
韩磊
关键词 高分辨率遥感矿山环境治理区划综合治理防治对策    
Abstract

Random-forest classification(RFC)method was used to extract the land cover information from the TH-1 satellite remotely sensed multispectral data in Beitun Town and its adjacent areas within the arid region of Altay,Xinjiang. Owing to the mixture of the impervious covers and the exposed soils inside the city, the textural and vegetation features were derived from the TH-1 panchromatic image and multispectral bands and subsequently applied to creating optimal feature set so as to implement the RFC classification. The optimized classifier can achieve better identification of some confused land cover classes. The results show that the RFC possesses higher accuracy than the conventional maximum likelihood classification(MLC)with the same TH-1 image, with their total accuracy being 82.26% and 72.61%, respectively. In addition, favorable applicability is observed in the land cover classification in the arid urban region using optimized combined multi-feature methods, which can provide land cover information for the urban development and planning in the medium and small cities of Xinjiang.

Key wordshigh resolution remote sensing    mine environment    division of governance    comprehensive governance    countermeasures
收稿日期: 2014-09-30      出版日期: 2015-11-27
ZTFLH:  TP751.1  
基金资助:

国家科技支撑计划项目"新疆重大突发事件应急响应技术与应用"(编号:2012BAH27B03)和新疆建设兵团援疆项目"基于小型无人机遥感的额河流域自然灾害防控关键技术研究"(编号:2014AB021)。

通讯作者: 张显峰(1967-),男,副教授,主要从事生态遥感、高光谱遥感数据智能处理与分析、遥感数据同化模拟等方面的研究。Email:xfzhang@pku.edu.cn。     E-mail: xfzhang@pku.edu.cn
作者简介: 田绍鸿(1991-),男,硕士研究生,主要从事生态遥感、遥感数据智能处理与分析等方面的研究。Email:shaohongtian@pku.edu.cn。
引用本文:   
田绍鸿, 张显峰. 采用随机森林法的天绘数据干旱区城市土地覆盖分类[J]. 国土资源遥感, 2016, 28(1): 43-49.
TIAN Shaohong, ZHANG Xianfeng. Random forest classification of land cover information of urban areas in arid regions based on TH-1 data. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 43-49.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.01.07      或      http://www.gtzyyg.com/CN/Y2016/V28/I1/43

[1] 董锁成,王传胜,尤飞,等.中国西部经济社会地域分异规律研究[J].地理研究,2002,21(4):399-406. Dong S C,Wang C S,You F,et al.On the laws of territorial differentiation of socio-economic development in western China[J].Geographical Research,2002,21(4):399-406.

[2] 骆剑承,王钦敏,马江洪,等.遥感图像最大似然分类方法的EM改进算法[J].测绘学报,2002,31(3):234-239. Luo J C,Wang Q M,Ma J H,et al.The EM-based maximum likelihood classifier for remotely sensed data[J].Acta Geodaetica et Cartographica Sinica,2002,31(3):234-239.

[3] Ediriwickrema J,Khorram S.Hierarchical maximum-likelihood classification for improved accuracies[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):810-816.

[4] 谭琨,杜培军.基于支持向量机的高光谱遥感图像分类[J].红外与毫米波学报,2008,27(2):123-128. Tan K,Du P J.Hyperspectral remote sensing image classification based on support vector machine[J].Journal of Infrared and Millimeter Waves,2008,27(2):123-128.

[5] 毛建旭,王耀南.基于神经网络的遥感图像分类[J].测控技术,2001,20(5):29-30. Mao J X,Wang Y N.Remote sensing image classification based on neural network[J].Measurement and Control Technology,2001,20(5):29-30.

[6] 李强,王正志.基于人工神经网络和经验知识的遥感信息分类综合方法[J].自动化学报,2000,26(2):233-239. Li Q,Wang Z Z.Remote sensing information classification based on artificial neural network and knowledge[J].Acta Automatica Sinica,2000,26(2):233-239.

[7] 王耀南.小波神经网络的遥感图像分类[J].中国图象图形学报,1999,4(5):368-371. Wang Y N.A classification of remote sensing image using wavelet neural network[J].Journal of Image and Graphics,1999,4(5):368-371.

[8] Giacinto G,Roli F.An approach to the automatic design of multiple classifier systems[J].Pattern Recognition Letters,2001,22(1):25-33.

[9] Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.

[10] Rodríguez-Galiano V F,Abarca-Hernández F,Ghimire B,et al.Incorporating spatial variability measures in land-cover classification using Random Forest[J].Procedia Environmental Sciences,2011,3:44-49.

[11] Gislason P O,Benediktsson J A,Sveinsson J R.Random forests for land cover classification[J].Pattern Recognition Letters,2006,27(4):294-300.

[12] Ham J,Chen Y C,Crawford M M,et al.Investigation of the random forest framework for classification of hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):492-501.

[13] Chan J C W,Paelinckx D.Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J].Remote Sensing of Environment,2008,112(6):2999-3011.

[14] Guo L,Chehata N,Mallet C,et al.Relevance of airborne LiDARand multispectral image data for urban scene classification using Random Forests[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(1):56-66.

[15] Yuan F,Sawaya K E,Loeffelholz B C,et al.Land cover classification and change analysis of the Twin Cities(Minnesota) Metropolitan area by multitemporal Landsat remote sensing[J].Remote sensing of Environment,2005,98(2/3):317-328.

[16] 刘毅,杜培军,郑辉,等.基于随机森林的国产小卫星遥感影像分类研究[J].测绘科学,2012,37(4):194-196. Liu Y,Du P J,Zheng H,et al.Classification of China small satellite remote sensing image based on random forests[J].Science of Surveying and Mapping,2012,37(4):194-196.

[17] 杨耘,徐丽,颜佩丽.条件随机场框架下基于随机森林的城市土地利用/覆盖遥感分类[J].国土资源遥感,2014,26(4):51-55.doi:10.6046/gtzyyg.2014.04.09. Yang Y,Xu L,Yan P L.Urban land use/cover classification of remote sensing using random forests under the framework of conditional random fields[J].Remote Sensing for Land and Resources,2014,26(4):51-55.doi:10.6046/gtzyyg.2014.04.09.

[18] 张修远,刘修国.基于随机森林算法的高维模糊分类研究[J].国土资源遥感,2014,26(2):87-92.doi:10.6046/gtzyyg.2014.02.15. Zhang X Y,Liu X G.Study of high-dimensional fuzzy classification based on random forest algorithm[J].Remote Sensing for Land and Resources,2014,26(2):87-92.doi:10.6046/gtzyyg.2014.02.15.

[19] 魏娜,姚艳敏,陈佑启.高光谱遥感土壤质量信息监测研究进展[J].中国农学通报,2008,24(10):491-496. Wei N,Yao Y M,Chen Y Q.The advance of soil quality information monitoring by hyperspectral remote sensing[J].Chinese Agricultural Science Bulletin,2008,24(10):491-496.

[20] Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.

[21] Ho T K.The random subspace method for constructing decision forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):832-844.

[22] 方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2012,26(3):32-38. Fang K N,Wu J B,Zhu J P,et al.A review of technologies on random forests[J].Statistics and Information Forum,2012,26(3):32-38.

[23] 董师师,黄哲学.随机森林理论浅析[J].集成技术,2013,2(1):1-7. Dong S S,Huang Z X.A brief theoretical overview of random forests[J].Journal of Integration Technology,2013,2(1):1-7.

[24] Wolpert D H,Macready W G.An efficient method to estimate bagging's generalization error[J].Machine Learning,1999,35(1):41-55.

[25] Otukei J R,Blaschke T.Land cover change assessment using decision trees,support vector machines and maximum likelihood classification algorithms[J].International Journal of Applied Earth Observation and Geoinformation,2010,12(1):27-31.

[1] 范玉海, 王辉, 杨兴科, 彭齐鸣, 秦绪文, 杨金中, 张少鹏, 谭富荣. 基于高分辨率遥感数据的稀有金属矿化带勘查[J]. 国土资源遥感, 2018, 30(1): 128-134.
[2] 岳梦雪, 秦昆, 张恩兵, 张晔, 曾诚. 基于数据场和密度聚类的高分辨率影像居民区提取[J]. 国土资源遥感, 2017, 29(3): 92-97.
[3] 杨金中, 聂洪峰, 荆青青. 初论全国矿山地质环境现状与存在问题[J]. 国土资源遥感, 2017, 29(2): 1-7.
[4] 邓曾, 李丹, 柯樱海, 吴燕晨, 李小娟, 宫辉力. 基于改进SVM算法的高分辨率遥感影像分类[J]. 国土资源遥感, 2016, 28(3): 12-18.
[5] 李万伦, 甘甫平. 矿山环境高光谱遥感监测研究进展[J]. 国土资源遥感, 2016, 28(2): 1-7.
[6] 蔡红玥, 姚国清. 高分辨率遥感图像道路交叉口自动提取[J]. 国土资源遥感, 2016, 28(1): 63-71.
[7] 温礼, 吴海平, 姜方方, 苏伟, 朱德海, 张超. 基于高分辨率遥感影像的围填海图斑遥感监测分类体系和解译标志的建立[J]. 国土资源遥感, 2016, 28(1): 172-177.
[8] 郭啟倩, 李盛乐, 刘珠妹. 断层高分辨率遥感在线解译及产状测量平台[J]. 国土资源遥感, 2016, 28(1): 190-196.
[9] 杨显华, 黄洁, 田立, 刘智, 韩磊. 基于高分辨率遥感数据的矿山环境综合治理研究——以冕宁牦牛坪稀土矿为例[J]. 国土资源遥感, 2015, 27(4): 115-121.
[10] 苏腾飞, 李洪玉, 屈忠义. 高分辨率遥感图像道路分割算法[J]. 国土资源遥感, 2015, 27(3): 1-6.
[11] 陈琪, 赵志芳, 何彬仙, 王頔, 习靖. 基于RS和GIS技术的矿山环境恢复与治理规划——以云南省元阳某金矿矿集区为例[J]. 国土资源遥感, 2015, 27(3): 167-171.
[12] 杨兴旺, 杨树文, 张黎明, 姚花琴, 李轶鲲. 高分辨率遥感影像阴影检测与补偿系统的设计与实现[J]. 国土资源遥感, 2015, 27(3): 177-181.
[13] 杨叶涛, 王迎迎, 曾又枝. 基于面向对象的高分遥感景观格局提取方法[J]. 国土资源遥感, 2014, 26(4): 46-50.
[14] 杨耘, 徐丽, 颜佩丽. 条件随机场框架下基于随机森林的城市土地利用/覆盖遥感分类[J]. 国土资源遥感, 2014, 26(4): 51-55.
[15] 蔡红玥, 姚国清. 基于分水岭算法的高分遥感图像道路提取优化方法[J]. 国土资源遥感, 2013, 25(3): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发