Please wait a minute...
国土资源遥感  2016, Vol. 28 Issue (1): 57-62    DOI: 10.6046/gtzyyg.2016.01.09
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于机载LiDAR和GIS数据的建筑物变化信息自动检测方法
唐菲菲1,2,3, 阮志敏4, 张亚利1, 彭丽1
1. 重庆大学土木工程学院, 重庆 400045;
2. 重庆大学土木工程博士后科研流动站, 重庆 400045;
3. 重庆市勘测院博士后科研工作站, 重庆 400020;
4. 招商局重庆交通科研设计院有限公司, 重庆 400067
Automatic detection of change information for buildings based on airborne LiDAR and GIS data
TANG Feifei1,2,3, RUAN Zhimin4, ZHANG Yali1, PENG Li1
1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
2. Civil Engineering Postdoctoral Research Station, Chongqing University, Chongqing 400045, China;
3. Postdoctoral Workstation, Chongqing Survey Institute, Chongqing 400020, China;
4. China Merchants Chongqing Communications Research & Design Institute Co Ltd, Chongqing 400067, China
全文: PDF(13752 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

建筑物的变化信息对地图更新和相关地理要素的统计至关重要。首先,通过LiDAR数据提取建筑物信息,应用alpha-shapes算法得到建筑物的边缘信息;然后,将该信息和GIS地图矢量数据对比,应用多级变化检测策略进行自动检测,得出变化的建筑物并精确到建筑物变化的细部特征。该方法不仅能实现建筑物的定性变化检测,而且能对变化信息进行定量统计,检测结果的准确率达到95%。与以往单纯利用影像数据的方法相比,该方法自动化程度和效率均较高,且处理流程简捷。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁荣荣
徐佳
林晓彬
许康
关键词 InSARTerraSAR-X干涉测量点目标分析(IPTA)沉降监测线状地物    
Abstract

The change information of buildings is vital for map updating and statistics of geographical features. First, the information of buildings was extracted from airborne LiDAR data and the edges of buildings were detected by the alpha-shapes algorithm. Then the edges were compared with those in GIS vector data using multi-level change detection strategy to detect the slight changes of buildings automatically. The experiment results show that not only qualitative change detection can be accomplished but also the quantitative statistics of changed features can be obtained, with the accuracy of detection results reaching 95%. Compared with previous methods based on image, this method has advantages of high automation, simple processing procedures and high efficiency.

Key wordsInSAR    TerraSAR-X    IPTA    subsidence monitorying    linear structure
收稿日期: 2014-08-13      出版日期: 2015-11-27
ZTFLH:  P237  
基金资助:

中央高校基本科研业务费科研专项(自然科学类项目)"山地城市的机载激光扫描数据滤波方法研究"(编号:106112014CDJZR200019)、国家自然科学基金(青年基金)项目"融合机载LiDAR点云数据和GIS数据的城区违章建筑物智能3D识别方法研究"(编号:41401380)及国家留学基金项目共同资助。

作者简介: 唐菲菲(1980-),女,博士,讲师,主要从LiDAR数据处理方面的研究。Email:fftang@cqu.edu.cn。
引用本文:   
唐菲菲, 阮志敏, 张亚利, 彭丽. 基于机载LiDAR和GIS数据的建筑物变化信息自动检测方法[J]. 国土资源遥感, 2016, 28(1): 57-62.
TANG Feifei, RUAN Zhimin, ZHANG Yali, PENG Li. Automatic detection of change information for buildings based on airborne LiDAR and GIS data. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 57-62.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.01.09      或      http://www.gtzyyg.com/CN/Y2016/V28/I1/57

[1] 徐宏根,宋妍.顾及阴影信息的高分辨率遥感图像变化检测方法[J].国土资源遥感,2013,25(4):16-21.doi.10.6046/gtzyyg.2013.04.03. Xu H G,Song Y.Change detection method taking into account shadow information for high resolution remote sensing image[J].Remote Sensing for Land and Resources,2013,25(4):16-21.doi.10.6046/gtzyyg.2013.04.03.

[2] 李亮,舒宁,龚龑.考虑时空关系的遥感影像变化检测和变化类型识别[J].武汉大学学报:信息科学版,2013,38(5):533-537. Li L,Shu N,Gong Y.Remote sensing image change detection and change type recognition based on spatiotemporal relationship[J].Geomatics and Information Science of Wuhan University,2013,38(5):533-537.

[3] 张晓东,李德仁,龚健雅,等.遥感影像与GIS分析相结合的变化检测方法[J].武汉大学学报:信息科学版,2006,31(3):266-269. Zhang X D,Li D R,Gong J Y,et al.A change detection method of integrating remote sensing and GIS[J].Geomatics and Information Science of Wuhan University,2006,31(3):266-269.

[4] Tian J J,Reinartz P.Multitemporal 3D change detection in urban areas using stereo information from different sensors[C]//2011 International Symposium on Image and Data Fusion(ISIDF).Yunnan,China:IEEE,2011:1-4.

[5] Bouziani M,Goïta K,He D C.Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(1):143-153.

[6] Chen L C,Lin L J.Detection of building changes from aerial images and light detection and ranging(LIDAR) data[J].Journal of Applied Remote Sensing,2010,4(1):041870.

[7] Rehor M.Classification of Building Damages based on Laser Scanning data[C]//Proceedings of ISPRS Workshops on Laser Scanning 2007 and SilviLaser 2007.Espoo,2007:326-331.

[8] Choi K,Lee I,Kim S.A feature based approach to automatic change detection from LiDAR data in urban areas[C]//Laserscanning09,Volume XXXVIII.France:International Achieves of Photogrammetry and Remote Sensing,2009:259-264.

[9] Rutzinger M,Rüf B,H fle B,et al.Change detection of building footprints from airborne laser scanning acquired in short time intervals[C]//ISPRS Technical Commission VII Symposium.Australia:International Archives of Photogrammetry and Remote Sensing,2010:475-480.

[10] Teo T A,Shih T Y.Lidar-based change detection and change-type determination in urban areas[J].International Journal of Remote Sensing,2013,34(3):968-981.

[11] Xu S,Vosselman G,Elberink S O.Detection and classification of changes in buildings from airborne laser scanning data[C]//ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,Volume II-5/W2:ISPRS Workshop Laser Scanning.Antalya,Turkey:ISPRS,2013:343-348.

[12] Vosselman G,Gorte B G H,Sithole G. Change detection for updating medium scale maps using laser altimetry[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2004,34(B3):207-212.

[13] Matikainen L,Hyyppä J,Ahokas E,et al.An improved approach for automatic detection of changes in buildings[C]//Proceedings of the ISPRS Workshop:Laserscanning'09.France:International Archives of Photogrammetry and Remote Sensing,2009:61-67.

[14] Matikainen L,Hyyppä J,Ahokas E,et al.Automatic detection of buildings and changes in buildings for updating of maps[J].Remote Sensing,2010,2(5):1217-1248.

[15] Xu S,Vosselman G,Elberink S O.Multiple-entity based classification of airborne laser scanning data in urban areas[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,88:1-15.

[16] Edelsbrunner H,Kirkpatrick D,Seidel R.On the shape of a set of points in the plane[J].IEEE Transactions on Information Theory,1983,29(4):551-559.

[1] 刘一霖, 张勤, 黄海军, 杨成生, 赵超英. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017, 29(2): 144-151.
[2] 李曼, 葛大庆, 张玲, 刘斌, 郭小方, 王艳. 基于PSInSAR技术的曹妃甸新区地面沉降发育特征及其影响因素分析[J]. 国土资源遥感, 2016, 28(4): 119-126.
[3] 陈丹蕾, 刘国祥, 王晓文, 王蕾, 蒲慧龙. 基于DInSAR技术与断层自动剖分方法反演断层滑动参数[J]. 国土资源遥感, 2016, 28(3): 25-30.
[4] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
[5] 王思胜, 江利明, 孙永玲, 柳林, 孙亚飞, 汪汉胜. 基于ALOS PALSAR数据的山地冰川流速估算方法比较——以喀喇昆仑地区斯克洋坎力冰川为例[J]. 国土资源遥感, 2016, 28(2): 54-61.
[6] 丁荣荣, 徐佳, 林晓彬, 许康. 基于高分辨率TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015, 27(4): 158-164.
[7] 杨成生, 刘媛媛, 敖萌. 基于SBAS时序分析的大同地面沉降与地下水活动研究[J]. 国土资源遥感, 2015, 27(1): 127-132.
[8] 王艳, 张玲, 葛大庆, 张学东, 李曼. 升降轨PSInSAR观测反演沉降与水平向位移试验[J]. 国土资源遥感, 2014, 26(4): 97-102.
[9] 王艳, 葛大庆, 张玲, 李曼, 郭小方, 王毅. 升降轨PSInSAR地面沉降监测结果的互检验与时序融合[J]. 国土资源遥感, 2014, 26(4): 125-130.
[10] 刘志敏, 李永生, 张景发, 罗毅, 刘斌. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(3): 37-42.
[11] 赵兴刚, 柳林, 钱静. 基于TerraSAR-X全极化数据的北极地区海冰信息提取[J]. 国土资源遥感, 2014, 26(3): 130-134.
[12] 张延冰, 郭华东, 韩春明. 利用机载双天线InSAR数据生成高精度DEM的试验研究——以大面积丘陵地区为例[J]. 国土资源遥感, 2014, 26(1): 97-102.
[13] 葛大庆, 殷跃平, 王艳, 张玲, 郭小方, 王毅. 地面沉降-回弹及地下水位波动的InSAR长时序监测——以德州市为例[J]. 国土资源遥感, 2014, 26(1): 103-109.
[14] 杨成生, 张勤, 张双成, 赵超英. 改进的Kriging算法用于GPS水汽插值研究[J]. 国土资源遥感, 2013, 25(1): 39-43.
[15] 郝华东, 刘国林, 陈贤雷, 曹振坦. 基于DEM的低相干区SAR干涉图卡尔曼滤波相位解缠算法[J]. 国土资源遥感, 2013, 25(1): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发