Please wait a minute...
国土资源遥感  2016, Vol. 28 Issue (1): 130-135    DOI: 10.6046/gtzyyg.2016.01.19
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于RapidEye影像的农村居民地遥感监测——以江西省泰和县为例
高孟绪1, 王卷乐1,3, 柏中强1,2, 祝俊祥1,2
1. 中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京 100101;
2. 中国科学院大学, 北京 100049;
3. 江苏省地理信息资源开发与利用协同创新中心, 南京 210023
Remote sensing monitoring of rural residential land based on RapidEye satellite images: A case study of Taihe County, Jiangxi Province
GAO Mengxu1, WANG Juanle1,3, BAI Zhongqiang1,2, ZHU Junxiang1,2
1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
全文: PDF(7105 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

农村居民地遥感信息获取对于监测农村居民地时空变化、服务"三农"和国土资源管理具有重要意义。以RapidEye卫星影像数据为数据源,江西省泰和县为研究区,利用最大似然法进行居民地等土地覆盖类别的分类提取与精度评价及分析。结果表明:分类总体精度达到84.33%,其中农村居民地的制图精度和用户精度分别为76.01%和82.28%,与第二次全国土地调查中的居民地数据对比,其一致性达到71.0%。结合实地验证,对本分类精度的误差原因进行分析。本研究表明利用5 m分辨率的RapidEye影像进行县级农村居民地监测是可行的,可为后续同类研究提供技术参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄维
黄进良
王立辉
胡砚霞
韩鹏鹏
关键词 变化向量分析(CVA)主成分分析(PCA)阈值确定变化检测    
Abstract

The monitoring of the spatial and temporal changes of rural residents is of great significance in serving "three rural issues", land and resources management based on rural remote sensing information. In order to monitor the residential area especially the rural area by using remote sensing technology, the authors chose Taihe County in Jiangxi Province as the study area. On the basis of the RapidEye satellite images after ortho-rectification with spatial resolution of 5 meters, the residential land classification extraction and accuracy evaluation were carried out using the maximum likelihood method. The results showed that the overall classification accuracy reached 84.33%. The producer's accuracy and user's accuracy of the residential land were 76.01% and 82.28% respectively, and the consistency reached 71.0% in comparison with the residential land data of Taihe County in the second national land survey, and the possible causes of errors were also analyzed. The research results show that the resident land monitoring of rural counties using RapidEye images of 5 meters resolution is feasible in that it can provide reference for future similar studies.

Key wordschange vector analysis(CVA)    principal component analysis(PCA)    threshold determination    change detection
收稿日期: 2014-07-23      出版日期: 2015-11-27
ZTFLH:  TP79  
基金资助:

国家科技基础性工作专项重点项目"格网化资源环境综合科学调查规范"(编号:2011FY110400),国家自然科学基金青年基金项目"基于地理环境遥感监测的喜马拉雅旱獭鼠疫疫源地空间分布与预测研究"(编号:41301474)及中国博士后科学基金资助项目(编号:2013M530708,2014T70114)共同资助。

通讯作者: 王卷乐(1976-),男,副研究员,主要从事遥感应用与GIS开发、数据集成与共享研究。Email:wangjl@igsnrr.ac.cn。     E-mail: wangjl@igsnrr.ac.cn
作者简介: 高孟绪(1982-),男,博士后,主要从事资源环境遥感与GIS应用、环境健康研究。Email:gaomx@igsnrr.ac.cn。
引用本文:   
高孟绪, 王卷乐, 柏中强, 祝俊祥. 基于RapidEye影像的农村居民地遥感监测——以江西省泰和县为例[J]. 国土资源遥感, 2016, 28(1): 130-135.
GAO Mengxu, WANG Juanle, BAI Zhongqiang, ZHU Junxiang. Remote sensing monitoring of rural residential land based on RapidEye satellite images: A case study of Taihe County, Jiangxi Province. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 130-135.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.01.19      或      http://www.gtzyyg.com/CN/Y2016/V28/I1/130

[1] Liu Y S,Lu S S,Chen Y F.Spatio-temporal change of urban-rural equalized development patterns in China and its driving factors[J].Journal of Rural Studies,2013,32:320-330.

[2] Tian G J,Qiao Z,Zhang Y Q.The investigation of relationship between rural settlement density,size,spatial distribution and its geophysical parameters of China using Landsat TM images[J].Ecological Modelling,2012,231:25-36.

[3] Vaudour E,Carey V A,Gilliot J.Digital zoning of South African viticultural terroirs using bootstrapped decision trees on morphometric data and multitemporal SPOT images[J].Remote Sensing of Environment,2010,114(12):2940-2950.

[4] Gong P,Wang J,Yu L,et al.Finer resolution observation and monitoring of global land cover:First mapping results with Landsat TM and ETM+ data[J].International Journal of Remote Sensing,2013,34(7):2607-2654.

[5] 杨存建,周成虎.基于知识发现的TM图像居民地自动提取研究[J].遥感技术与应用,2001,16(1):1-6. Yang C J,Zhou C H.Extracting residential area from TM image on the basis of knowledge discovered[J].Remote Sensing Technology and Application,2001,16(1):1-6.

[6] 赵萍,冯学智,林广发.SPOT卫星影像居民地信息自动提取的决策树方法研究[J].遥感学报,2003,7(4):309-315. Zhao P,Feng X Z,Lin G F.The Decision tree algorithm of automatically extracting residential information from SPOT images[J].Journal of Remote Sensing,2003,7(4):309-315.

[7] Wang L,Sousa W,Gong P.Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J].International Journal of Remote Sensing,2004,25(24):5655-5668.

[8] Tso Brandt T,Mather P.Classification Methods for Remotely Sensed Data(2nd edition)[M].2nd ed.New York:CRC Press,20097.

[9] 金飞,张占睦,芮杰.纹理主方向的遥感影像居民地提取[J].测绘科学,2010,35(4):139-141. Jin F,Zhang Z M,Rui J.Residential area extraction frorm remote sensing image based on texture principal directions[J].Science of Surveying and Mapping,2010,35(4):139-141.

[10] Zhou G H,He Y H,Tang C L,et al.Dynamic mechanism and present situation of rural settlement evolution in China[J].Journal of Geographical Sciences,2013,23(3):513-524.

[11] 汪权方,许纪承,陈媛媛,等.遥感影像空间分辨率对居民地信息提取的影响[J].资源科学,2012,34(1):159-165. Wang Q F,Xu J C,Chen Y Y,et al.Influence of the varied spatial resolution of remote sensing images on urban and rural residential information extraction[J].Resources Science,2012,34(1):159-165.

[12] 明冬萍,王群,杨建宇.遥感影像空间尺度特性与最佳空间分辨率选择[J].遥感学报,2008,12(4):529-537. Ming D P,Wang Q,Yang J Y.Spatial scale of remote sensing image and selection of optimal spatial resolution[J].Journal of Remote Sensing,2008,12(4):529-537.

[13] 刘芳,张增祥,汪潇,等.北京市农村居民点用地的遥感动态监测及驱动力分析[J].国土资源遥感,2009,21(3):88-93.doi:10.6046/gtzyyg.2009.03.18. Liu F,Zhang Z X,Wang X,et al.The dynamic monitoring of rural residential land in Beijing and driving force analysis based on multi-source remote sensing data[J].Remote Sensing for Land and Resources,2009,21(3):88-93.doi:10.6046/gtzyyg.2009.03.18.

[14] 邓书斌.ENVI遥感图像处理方法[M].北京:科学出版社,2010. Deng S B.ENVI Rremote Sensing Image Process Methods[M].Beijing:Science Press,2010.

[15] 徐京萍,赵建华,张丰收,等.面向对象的池塘养殖用海信息提取[J].国土资源遥感,2013,25(1):82-85.doi:10.6046/gtzyyg.2013.01.15. Xu J P,Zhaon J H,Zhang F S,et al.Object-oriented information extraction of pond aquaclulture[J].Remote Sensing for Land and Resources,2013,25(1):82-85.doi:10.6046/gtzyyg.2013.01.15.

[16] 杨宝尧,杜震洪,刘仁义,等.基于第二次全国土地调查数据的土地利用现状图制图综合技术研究[J].国土资源遥感,2012,24(4):107-111.doi:10.6046/gtzyyg.2012.04.18. Yang B Y,Du Z H,Liu R Y,et al.Researches on generalization technology for land use mapping based on 2nd national land survey data[J].Remote Sensing for Land and Resources,2012,24(4):107-111.doi:10.6046/gtzyyg.2012.04.18.

[1] 尹凌宇, 覃先林, 孙桂芬, 刘树超, 祖笑锋, 陈小中. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018, 30(1): 95-101.
[2] 刁娇娇, 龚鑫烨, 李明诗. 利用综合变化检测方法进行土地覆盖变化制图[J]. 国土资源遥感, 2018, 30(1): 157-165.
[3] 何超. 地质灾害体遥感变化信息检测及趋势分析[J]. 国土资源遥感, 2017, 29(s1): 27-33.
[4] 李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017, 29(3): 77-84.
[5] 朱红春, 黄伟, 刘海英, 张忠芳, 王彬. 基于KL散度的面向对象遥感变化检测[J]. 国土资源遥感, 2017, 29(2): 46-52.
[6] 项盛文, 文贡坚, 高峰. 知识驱动下的飞机目标变化检测方法[J]. 国土资源遥感, 2016, 28(4): 77-82.
[7] 唐菲菲, 阮志敏, 张亚利, 彭丽. 基于机载LiDAR和GIS数据的建筑物变化信息自动检测方法[J]. 国土资源遥感, 2016, 28(1): 57-62.
[8] 黄维, 黄进良, 王立辉, 胡砚霞, 韩鹏鹏. 基于PCA的变化向量分析法遥感影像变化检测[J]. 国土资源遥感, 2016, 28(1): 22-27.
[9] 李莎, 倪维平, 严卫东, 吴俊政, 张晗. 基于选权迭代估计与非监督分类的多光谱图像变化检测[J]. 国土资源遥感, 2014, 26(4): 34-40.
[10] 万剑华, 厉梅, 任广波, 马毅. 基于变化检测的滨海湿地图高效更新方法[J]. 国土资源遥感, 2013, 25(4): 85-90.
[11] 徐宏根, 宋妍. 顾及阴影信息的高分辨率遥感图像变化检测方法[J]. 国土资源遥感, 2013, 25(4): 16-21.
[12] 李雪, 舒宁, 刘小利, 李井冈. 基于特征映射模式分析的对象级变化检测方法[J]. 国土资源遥感, 2013, 25(3): 51-55.
[13] 白杨, 赵银娣. 基于KPCA和FCM的HJ-1A星遥感数据分类[J]. 国土资源遥感, 2013, 25(1): 71-76.
[14] 王东广, 肖鹏峰, 宋晓群, 王铁成, 陈刚. 结合纹理信息的高分辨率遥感图像变化检测方法[J]. 国土资源遥感, 2012, 24(4): 76-81.
[15] 卢昭羿, 左小清, 黄亮, 刘静. 面向对象的投影互分割道路变化检测[J]. 国土资源遥感, 2012, 24(3): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发