Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (1): 166-171    DOI: 10.6046/gtzyyg.2016.01.24
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于TLS技术的典型建筑物震害信息三维建模分析——以彭州市白鹿中学为例
焦其松1,2, 张景发2, 蒋洪波2, 宿渊源2, 王旭2
1. 中国地震局工程力学研究所, 哈尔滨 150080;
2. 中国地震局地壳应力研究所地壳动力学重点实验室, 北京 100085
Typical earthquake damage extraction and three-dimensional modeling analysis based on terrestrial laser scanning: A case study of Bailu middle school of Pengzhou city
JIAO Qisong1,2, ZHANG Jingfa2, JIANG Hongbo2, SU Yuanyuan2, WANG Xu2
1. Institute of Engineering Mechanics, CEA, Harbin 150080, China;
2. Institute of Crustal Dynamics, CEA, Beijing 100085, China
全文: PDF(11385 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

传统光学及雷达遥感技术在地震灾害损失评估中无法获取建筑物立面破坏信息,对结构已遭破坏,但顶面基本完好的建筑物识别能力较差。三维激光扫描技术(terrestrial laser scanning,TLS)可以获取建筑物结构破坏状况的高精度三维信息。利用2013年10月23日RIEGL VZ-1000三维激光扫描仪采集到的汶川地震震后彭州市白鹿中学的精细点云数据,通过不规则三角网建模和纹理贴图等处理进行三维建模分析,在此基础上对建筑物的典型破坏特征及地表破裂情况进行了详细建模研究,真实再现了白鹿中学破坏场景,实现了震害信息的永久保存。研究结果表明:位于断层上盘的勤学楼整体无明显破损;位于下盘的求知楼损毁相对严重,普遍出现"X"形的共轭剪切裂缝、构造柱断裂及露筋等现象;地震陡坎沉降量不大,高程剖面显示现今该陡坎最低高度为205 cm,最高为231 cm,与GPS测量结果大致吻合。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡红玥
姚国清
关键词 道路交叉口自动提取高分辨率遥感图像形态学多尺度角度纹理波谷检测    
Abstract

Traditional optical and Radar remote sensing technology fails to acquire the building facade damage in the case of earthquake damage assessment. The capability of identifying the buildings whose structure has been destroyed and whose roof top is basically complete is poor. This reduces the assessment accuracy. However, terrestrial laser scanning could acquire the high precision 3D information of the damaged structure. Using RIEGL VZ-1000 laser scanner, the authors collected laser point clouds data of Bailu middle school on October 23, 2013. The point clouds were used to conduct 3D modeling and analysis through triangular irregular network modeling and texture mapping. On such a basis, a detailed modeling study was carried out on the typical architectural damage characteristics and surface rupture destruction. The authors achieved damaged buildings surface observation at any angle and quantitative measurement of the surface rupture through point clouds 3D modeling. The results truly reproduced the current scene of Bailu middle school after earthquake and permanently preserved the damage information. The results showed that the Qinxue building located on the hanging wall had no significant damage, whereas the Qiuzhi building located on the heading wall was seriously damaged. "X"-shaped conjugate shear fracture, structural column fracture, rebar exposure and other phenomena were widespread. The earthquake scarp settlement was small and the scarp elevation profile showed that the minimum and maximum height was 205cm and 231cm respectively. This was consistent with the GPS measurements.

Key wordsroad intersection    autoextraction    high resolution remote sensing image    mathematical morphology    multi-scale    angular texture signature    valley finding
收稿日期: 2014-09-09      出版日期: 2015-11-27
:  TP79  
基金资助:

中央级公益性科研院所基本科研业务专项(编号:J2213802)和国家高技术研究发展计划(编号:2012AA121304)共同资助。

作者简介: 焦其松(1985-),男,博士研究生,主要从事遥感地质方面的研究。Email:1985jqs@163.com。
引用本文:   
焦其松, 张景发, 蒋洪波, 宿渊源, 王旭. 基于TLS技术的典型建筑物震害信息三维建模分析——以彭州市白鹿中学为例[J]. 国土资源遥感, 2016, 28(1): 166-171.
JIAO Qisong, ZHANG Jingfa, JIANG Hongbo, SU Yuanyuan, WANG Xu. Typical earthquake damage extraction and three-dimensional modeling analysis based on terrestrial laser scanning: A case study of Bailu middle school of Pengzhou city. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 166-171.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.01.24      或      https://www.gtzyyg.com/CN/Y2016/V28/I1/166

[1] 荆凤,申旭辉,洪顺英,等.遥感技术在地震科学研究中的应用[J].国土资源遥感,2008,20(2):5-8.doi:10.6046/gtzyyg.2008.02.02. Jing F,Shen X H,Hong S Y,et al.The application of remote sensing technology to earthquake science research[J].Remote Sensing for Land and Resources,2008,20(2):5-8.doi:10.6046/gtzyyg.2008.02.02.

[2] 王治华,周英杰,徐斌,等."5·12"汶川大地震震中区映秀镇地震灾情及次生地质灾害遥感初步调查[J].国土资源遥感,2008,20(2):1-4.doi:10.6046/gtzyyg.2008.02.01. Wang Z H,Zhou Y J,Xu B,et al.Preliminary remote sensing investigation of damage caused by the "5·12" Wenchuan strong earthquake as well as secondary hazards at the quake center-Yingxiu town[J].Remote Sensing for Land and Resources,2008,20(2):1-4.doi:10.6046/gtzyyg.2008.02.01.

[3] 郭兆成,童立强,郑雄伟,等.四川芦山地震次生地质灾害遥感调查及灾害特征初探[J].国土资源遥感,2014,26(3):99-105.doi:10.6046/gtzyyg.2014.03.16. Guo Z C,Tong L Q,Zheng X W,et al.Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics[J].Remote Sensing for Land and Resources,2014,26(3):99-105.doi:10.6046/gtzyyg.2014.03.16.

[4] 于海洋,程钢,张育民,等.基于LiDAR和航空影像的地震灾害倒塌建筑物信息提取[J].国土资源遥感,2011,23(3):77-81.doi:10.6046/gtzyyg.2011.03.14. Yu H Y,Cheng G,Zhang Y M,et al.The detection of earthquake-caused collapsed building information from LiDAR data and aerophotograph[J].Remote Sensing for Land and Resources,2011,23(3):77-81.doi:10.6046/gtzyyg.2011.03.14.

[5] 魏永明,魏显虎,陈玉.岷江流域映秀——茂县段地震次生地质灾害分布规律及发展趋势分析[J].国土资源遥感,2014,26(4):179-186.doi:10.6046/gtzyyg.2014.04.28. Wei Y M,Wei X H,Chen Y.Analysis of distribution regularity and development tendency of earthquake secondary geohazards in Yingxiu-Maoxian section along the Minjiang River[J].Remote Sensing for Land and Resources,2014,26(4):179-186.doi:10.6046/gtzyyg.2014.04.28.

[6] 姚艳丽,蒋胜平,王红平.基于地面三维激光扫描仪的滑坡整体变形监测方法[J].测绘地理信息,2014,39(1):50-53,56. Yao Y L,Jiang S P,Wang H P.Overall deformation monitoring for landslide by using ground 3D laser scanner[J].Journal of Geomatics,2014,39(1):50-53,56.

[7] 袁小祥,王晓青,窦爱霞,等.基于地面LiDAR玉树地震地表破裂的三维建模分析[J].地震地质,2012,34(1):39-46. Yuan X X,Wang X Q,Dou A X,et al.Terrestrial LiDAR-based 3D modeling analysis of surface rupture caused by Yushu earthquake[J].Seismology and Geology,2012,34(1):39-46.

[8] 董秀军,黄润秋.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报,2006,25(s2):3629-3635. Dong X J,Huang R Q.Application of 3D laser scanning technology to geologic survey of high and steep slope[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(s2):3629-3635.

[9] 梅文胜,周燕芳,周俊.基于地面三维激光扫描的精细地形测绘[J].测绘通报,2010(1):53-56. Mei W S,Zhou Y F,Zhou J.Fine topographic mapping based on ground three-dimensional laser scanning[J].Bulletin of Surveying and Mapping,2010(1):53-56.

[10] 孙柏涛,梅云弟.竖向变刚度约束砌体结构抗震能力研究[J].地震工程与工程振动,2012,32(2):1-13. Sun B T,Mei Y D.A study on the aseismic capacity of the confined masonry structure with variable vertical stiffness[J].Earthquake Engineering and Engineering Vibration,2012,32(2):1-13.

[11] 任俊杰,张世民,马保起,等.龙门山断裂带中北段大震复发特征与复发间隔估计[J].地震学报,2009,31(2):160-171. Ren J J,Zhang S M,Ma B Q,et al.Characteristics and recurrence intervals of large earthquakes along the middle-northern segment of the Longmenshan fault zone[J].Acta Seismologica Sinica,2009,31(2):160-171.

[12] 陈浩,李勇,董顺利,等.汶川8.0级地震地表破裂白鹿镇段的变形特征[J].自然杂志,2009,31(5):268-271. Chen H,Li Y,Dong S L,et al.Deformation features of surface rupture of the Wenchuan Earthquake(M8.0) at the Bailu Town[J].Chinese Journal of Nature,2009,31(5):268-271.

[13] 陈立春,冉勇康,陈杰,等.龙门山前山断裂大地震原地重复发生的地质地貌证据[J].第四纪研究,2009,29(3):472-483. Chen L C,Ran Y K,Chen J,et al.Geological and geomorphic evidence for repeatedly occurring severe earthquakes on fronter-range fault of Longmenshan,China[J].Quaternary Sciences,2009,29(3):472-483.

[14] 周强,孙柏涛.汶川地震中极震区砌体结构教学楼典型震害分析[J].震灾防御技术,2010,5(4):467-476. Zhou Q,Sun B T.Seismic damage analysis of typical masonry teaching buildings in meizoseismic area of Wenchuan earthquake[J].Technology for Earthquake Disaster Prevention,2010,5(4):467-476.

[15] 谢瑞,胡敏捷,程效军,等.三维激光HDS3000扫描仪点位精度分析与研究[J].遥感信息,2008(6):53-57,84. Xie R,Hu M J,Cheng X J,et al.Study on point precision of 3D laser scanning based on HDS3000[J].Remote Sensing Information,2008(6):53-57,84.

[1] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[2] 臧丽日, 杨树文, 申顺发, 薛庆, 秦肖伟. 耦合分水岭与形态学的特殊纹理影像配准算法[J]. 自然资源遥感, 2022, 34(1): 76-84.
[3] 温银堂, 王铁柱, 王书涛, 王贵川, 刘诗瑜, 崔凯. 基于多尺度分割的高分辨率遥感影像镶嵌线自动提取[J]. 自然资源遥感, 2021, 33(4): 64-71.
[4] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[5] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[6] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[7] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[8] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[9] 娄佩卿, 陈晓雨, 王疏桐, 付波霖, 黄永怡, 唐廷元, 凌铭. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020, 32(1): 216-223.
[10] 姜德才, 李文吉, 李敬敏, 白罩峰. ALOS PALSAR散射总功率的面向对象林火区提取[J]. 国土资源遥感, 2019, 31(4): 47-52.
[11] 刘玉锋, 潘英, 李虎. 基于高空间分辨率遥感数据的天山云杉树冠信息提取研究[J]. 国土资源遥感, 2019, 31(4): 112-119.
[12] 翟德超, 范亚男, 周亚男. 融入边界特征的遥感影像多尺度分割[J]. 国土资源遥感, 2019, 31(3): 36-42.
[13] 毛宁, 刘慧平, 刘湘平, 张洋华. 基于RMNE方法的多尺度分割最优分割尺度选取[J]. 国土资源遥感, 2019, 31(2): 10-16.
[14] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[15] 吴柳青, 胡翔云. 基于多尺度多特征的高空间分辨率遥感影像建筑物自动化检测[J]. 国土资源遥感, 2019, 31(1): 71-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发