Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (2): 54-61    DOI: 10.6046/gtzyyg.2016.02.09
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于ALOS PALSAR数据的山地冰川流速估算方法比较——以喀喇昆仑地区斯克洋坎力冰川为例
王思胜1,2,3, 江利明1, 孙永玲1,2, 柳林1,2, 孙亚飞1,2, 汪汉胜1
1. 中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室, 武汉 430077;
2. 中国科学院大学, 北京 100049;
3. 西安市勘察测绘院, 西安 710054
Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images:A case study of Skyang glacier in central Karakoram
WANG Sisheng1,2,3, JIANG Liming1, SUN Yongling1,2, LIU Lin1,2, SUN Yafei1,2, WANG Hansheng1
1. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Xi'an Geotechnical Investigation and Surveying Mapping Institute, Xi'an 710054, China
全文: PDF(5902 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

冰川表面流速是进行冰川动力学和物质平衡研究的关键参数之一。合成孔径雷达(SAR)影像作为能大范围提取山地冰川表面流速的重要数据源,利用其进行冰川流速估算目前主要有差分InSAR(D-InSAR)法、多孔径InSAR(MAI)法和SAR偏移量追踪(offset tracking)法3种。其中,MAI法是为了克服D-InSAR对雷达方位向(along-track)形变不敏感而发展的一种新的InSAR技术。以喀喇昆仑山中部地区的斯克洋坎力冰川为例,选取了2008年2景间隔46 d的L波段ALOS PALSAR数据,利用上述3种方法分别进行冰川流速提取实验,讨论了3种方法在山地冰川表面流速监测中的适用性和局限性。结果表明,D-InSAR和MAI方法都能够精确提取距离向和方位向的冰川流速信息,但对相干性均要求较高; 在低相干区域,SAR偏移量追踪方法也能够获取更为可靠的方位向和距离向二维冰川流速的速度场,但该方法在冰川表面特征不明显的地区受到一定限制。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宇晖
颜梅春
李致家
余青
陈贝贝
关键词 混杂地物同物异谱决策树分类南方丘陵地区    
Abstract

Glacier surface velocity is one of the key parameters of glacier dynamics and mass balance. Synthetic aperture radar (SAR) image is an important data source to derive the glacier surface velocity. Now, methods for estimating glacier velocities mainly include Differential Interferometric techniques (D-InSAR), Multiple Aperture InSAR (MAI) and offset tracking. Among them, MAI is a new InSAR technology to overcome the drawback of D-InSAR which is not sensitive to radar azimuth (along-track) deformation. In this study, two ALOS PALSAR L band images which acquired 46 days apart were selected to derive glacier surface velocities of Skyang glacier in the central Karakoram based on the above three methods. In addition, the applications and limitations of the three methods in detecting glacier surface velocities are discussed. The results show that D-InSAR and MAI methods accurately detect displacements in range and azimuth direction respectively, but they all require high coherence. However, in areas of low coherence, offset tracking method achieves more reliable results; moreover, it can obtain two-dimensional glacier velocity field in both range and azimuth direction. Nevertheless, it is limited in the areas which lack feature points.

Key wordsmixed ground    same object with different spectra    decision tree classification    Southern hilly areas
收稿日期: 2014-10-15      出版日期: 2016-04-14
:  TP79  
基金资助:

国家自然科学基金项目(编号: 41274024,41321063和41431070)、中科院百人计划项目(编号: Y205771077)、国家"973"计划课题(编号: 2012CB957702)和中国科技部-欧洲空间局"龙计划"第三期项目(编号: 10674)共同资助。

通讯作者: 江利明(1976-),男,博士生导师,主要从事InSAR大地测量与卫星遥感方面的研究。Email: jlm@whigg.ac.cn。
作者简介: 王思胜(1987-),男,硕士研究生,主要从事基于主/被动遥感影像的冰流速提取应用研究。Email: wangsisheng12@mails.ucas.ac.cn。
引用本文:   
王思胜, 江利明, 孙永玲, 柳林, 孙亚飞, 汪汉胜. 基于ALOS PALSAR数据的山地冰川流速估算方法比较——以喀喇昆仑地区斯克洋坎力冰川为例[J]. 国土资源遥感, 2016, 28(2): 54-61.
WANG Sisheng, JIANG Liming, SUN Yongling, LIU Lin, SUN Yafei, WANG Hansheng. Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images:A case study of Skyang glacier in central Karakoram. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 54-61.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.02.09      或      https://www.gtzyyg.com/CN/Y2016/V28/I2/54

[1] 李治国.山地冰川变化监测研究综述[J].国土与自然资源研究,2012(2):94-96. Li Z G.Review of mountain glaciers monitoring[J].Territory and Natural Resources Study,2012(2):94-96.

[2] David G V,Josefino C C.Observation:Cryosphere[M]//IPCC.Climate Change 2013:The Physical Science Basis.Contribution of Working GroupⅠto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013.

[3] 黄磊,李震.光学遥感影像的山地冰川运动速度分析方法[J].冰川冻土,2009,31(5):935-940. Huang L,Li Z.Mountain glacier flow velocities analyzed from satellite optical images[J].Journal of Glaciology and Geocryology,2009,31(5):935-940.

[4] Goldstein R M,Engelhardt H,Kamb B,et al.Satellite radar interferometry for monitoring ice sheet motion:Application to an Antarctic ice stream[J].Science,1993,262(5139):1525-1530.

[5] Kenyi L W,Kaufmann V.Measuring rock glacier surface deformation using SAR interferometry[C]//Eighth International Conference on Permafrost.Zürich,2003,1:537-541.

[6] Joughin I,Smith B E,Abdalati W.Glaciological advances made with interferometric synthetic aperture radar[J].Journal of Glaciology,2010,56(200):1026-1042.

[7] 李佳.利用SAR技术监测天山托木尔峰区冰川运动[D].长沙:中南大学,2012. Li J.Deriving Surface Motion of Mountain Glaciers in Tian Shan from PLASAR Images[D].Changsha:Central South University,2012.

[8] Bechor N B,Zebker H A.Measuring two-dimensional movements using a single InSAR pair[J].Geophysical Research Letters,2006,33(16):L16311.

[9] Gourmelen N,Kim S W,Shepherd A,et al.Ice velocity determined using conventional and multiple-aperture InSAR[J].Earth and Planetary Science Letters,2011,307(1/2):156-160.

[10] Hu J,Li Z W,Li J,et al.3-D movement mapping of the alpine glacier in Qinghai-Tibetan plateau by integrating D-InSAR,MAI and offset-tracking:Case study of the Dongkemadi glacier[J].Global and Planetary Change,2014,118:62-68.

[11] Bolch T,Buchroithner M,Pieczonka T,et al.Planimetric and volumetric glacier changes in the Khumbu Himal,Nepal,since 1962 using Corona,landsat TM and ASTER data[J].Journal of Glaciology,2008,54(187):592-600.

[12] Rignot E,Mouginot J,Scheuchl B.Ice flow of the Antarctic ice sheet[J].Science,2011,333(6048):1427-1430.

[13] Bindschadler R,Vornberger P,Blankenship D,et al.Surface velocity and mass balance of ice streams D and E,West Antarctica[J].Journal of Glaciology,1996,42(142):461-475.

[14] Strozzi T,Luckman A,Murray T,et al.Glacier motion estimation using SAR offset-tracking procedures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2384-2391.

[15] Copland L,Pope S,Bishop M P,et al.Glacier velocities across the central Karakoram[J].Annals of Glaciology,2009,50(52):41-49.

[16] 蒋宗立,刘时银,许君利,等.应用SAR特征匹配方法估计音苏盖提冰川表面流速[J].冰川冻土,2011,33(3):512-518. Jiang Z L,Liu S Y,Xu J L,et al.Using feature-tracking of ALOS PALSAR images to acquire the Yengisogat glacier surface velocities[J].Journal of Glaciology and Geocryology,2011,33(3):512-518.

[17] Kimura H,Yamaguchi Y.Detection of landslide areas using satellite radar interferometry[J].Photogrammetric Engineering and Remote Sensing,2000,66(3):337-344.

[18] 周建民,李震,李新武.基于ALOS/PALSAR数据雷达干涉测量的中国西部山谷冰川冰流运动规律研究[J].测绘学报,2009,38(4):341-347. Zhou J M,Li Z,Li X W.Research on rules of the valley glacier motion in western China based on ALOS/PALSAR interferornetry[J].Acta Geodaetica et Cartographica Sinica,2009,38(4):341-347.

[19] 刘毅.基于光学遥感影像特征匹配的南极冰川流速测量方法研究[D].上海:同济大学,2014. Liu Y.Method for Glacier Velocity Measurement in Antarctic Based on Feature Matching of Remote Sensing Images[D].Shanghai:Tongji University,2014.

[20] Heid T,Kääb A.Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery[J].Remote Sensing of Environment,2012,118:339-355.

[21] 张祥松.喀喇昆仑山音苏盖提冰川及其邻近冰川的近期变化[J].冰川冻土,1980,2(3):12-16. Zhang X S.Recent variations of the Insukati glacier and adjacent glaciers in the Karaoram Mountains[J].Journal of Glaciology and Geocryology,1980,2(3):12-16.

[22] Ruan Z X,Guo H D,Liu G D,et al.Glacier surface velocity estimation in the west Kunlun mountain range from L-band ALOS/PALSAR images using modified synthetic aperture radar offset-tracking procedure[J].Journal of Applied Remote Sensing,2014,8(1):084595.

[23] Li J,Li Z W,Ding X L,et al.Investigating mountain glacier motion with the method of SAR intensity-tracking:Removal of topographic effects and analysis of the dynamic patterns[J].Earth-Science Reviews,2014,138:179-195.

[24] Quincey D J,Copland L,Mayer C,et al.Ice velocity and climate variations for Baltoro glacier,Pakistan[J].Journal of Glaciology,2009,55(194):1061-1071.

[1] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[2] 国贤玉, 李坤, 王志勇, 李宏宇, 杨知. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018, 30(4): 20-27.
[3] 王瑾杰, 丁建丽, 张成, 陈文倩. 基于GF-1卫星影像的改进SWI水体提取方法[J]. 国土资源遥感, 2017, 29(1): 29-35.
[4] 杨宇晖, 颜梅春, 李致家, 余青, 陈贝贝. 南方丘陵地区复杂地表“同物异谱”分类处理模型[J]. 国土资源遥感, 2016, 28(2): 79-83.
[5] 万剑华, 厉梅, 任广波, 马毅. 基于变化检测的滨海湿地图高效更新方法[J]. 国土资源遥感, 2013, 25(4): 85-90.
[6] 孙明, 沈渭寿, 谢敏, 李海东, 高菲. 基于光谱特征的雅鲁藏布江源区草地类型识别[J]. 国土资源遥感, 2012, 24(1): 83-89.
[7] 王迅, 徐丹丹, 李文龙.  
玛曲湿地遥感影像提取及精度分析
[J]. 国土资源遥感, 2009, 21(4): 96-100.
[8] 杨强, 张志. 湖北省保康磷矿区开采面及固体废弃物遥感信息提取方法研究[J]. 国土资源遥感, 2009, 21(2): 87-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发