Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (2): 79-83    DOI: 10.6046/gtzyyg.2016.02.13
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
南方丘陵地区复杂地表“同物异谱”分类处理模型
杨宇晖, 颜梅春, 李致家, 余青, 陈贝贝
河海大学地学院地理信息科学系, 南京 210098
Classification model for "same subject with different spectra" on complicated surface in Southern hilly areas
YANG Yuhui, YAN Meichun, LI Zhijia, YU Qing, CHEN Beibei
Department of GIS, School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
全文: PDF(2511 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

复杂流域地物混杂,因受背景干扰,对混杂在不同背景地物中的目标地物很难用1个规则区分出来。基于Landsat8多波段影像,以湘江的Ⅰ级支流蒸水河流域和长江三角洲的3大城市为研究区,采用最大似然法进行初步分类; 分析混杂地物的光谱特征,探讨区分混杂地物的决策规则,对水体、人工建筑、耕地、裸地、林地和裸岩等基本地物进行分类。结果表明,蒸水河流域分类的整体精度达到88.21%,高于监督分类精度(79.68%); 其他3个长江三角洲城市的分类精度都在92%以上。所提出的混杂地物区分模型可以提高混杂在不同背景中的同类地物的分类精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海庆
聂洪峰
陈玲
荆青青
李梦薇
李晓阳
关键词 遥感采矿沉陷危害煤矿    
Abstract

Mixed ground objects in complex basin are easily interfered by background, and foreground mixed in different ground objects is difficult to be distinguished by one rule. In this paper, the authors discuss the classification rule model of common ground feature in different mixed backgrounds. With Landsat8 images as the data source, level 1 tributary of Zhengshui River basin in Xiangjiang River basin and the three big cities of the Yangtze River delta as the study areas, the authors adopted the maximum likelihood method to conduct a preliminary classification. Based on analyzing the spectral characteristics of mixed feature, the authors built the classification decision tree of mixed ground feature to identify water, artificial construction, farmland, bare land, forest land and bare rock. The results obtained by the authors show that the overall accuracy of the Zhengshui River is about 88.21%, which is higher than the supervised classification accuracy of 79.68%, and the overall accuracy of other three cities along the Yangtze River is higher than 92%. It is shown that the classification model for mixed subjects can improve the accuracy of the same ground objects with different backgrounds.

Key wordsremote sensing    mining subsidence    hazard    coal mine
收稿日期: 2014-12-16      出版日期: 2016-04-14
ZTFLH:  TP751.1  
基金资助:

国家自然科学重点基金项目"半湿润半干旱流域水文模型研究"(编号: 41130639)资助。

通讯作者: 颜梅春(1971-),女,副教授,主要从事人文地理学、遥感与地理信息系统应用等方面的研究。Email: yanmeichun@hhu.edu.cn。     E-mail: yanmeichun@hhu.edu.cn
作者简介: 杨宇晖(1990-),女,硕士研究生,主要研究方向为遥感与地理信息系统应用。Email: yangyuhui0216@163.com。
引用本文:   
杨宇晖, 颜梅春, 李致家, 余青, 陈贝贝. 南方丘陵地区复杂地表“同物异谱”分类处理模型[J]. 国土资源遥感, 2016, 28(2): 79-83.
YANG Yuhui, YAN Meichun, LI Zhijia, YU Qing, CHEN Beibei. Classification model for "same subject with different spectra" on complicated surface in Southern hilly areas. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 79-83.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.02.13      或      http://www.gtzyyg.com/CN/Y2016/V28/I2/79

[1] 周国琼.面向对象的TM影像分类[D].昆明:昆明理工大学,2012. Zhou G Q.Landsat TM Imagery Classification Using Object-oriented Technology[D].Kunming:Kunming University of Science and Technology,2012.

[2] 李彤,吴骅.采用决策树分类技术对北京市土地覆盖现状进行研究[J].遥感技术与应用,2004,19(6):485-487. Li T,Wu H.Application of decision tree classification to Peking land cover[J].Remote Sensing Technology and Application,2004,19(6):485-487.

[3] 余坤勇,刘健,许章华,等.南方地区竹资源专题信息提取研究[J].遥感技术与应用,2009,24(4):449-455. Yu K Y,Lu J,Xu Z H,et al.Study on bamboo resources thematic information extraction in the south of China[J].Remote Sensing Technology and Application,2009,24(4):449-455.

[4] 宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5. Gong P,Li X,Xu B.Interpretation theory and application method development for information extraction from high resolution remotely sensed data[J].Journal of Remote Sensing,2006,10(1):1-5.

[5] Joy S M,Reich R M,Reynolds R T.A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees[J].International Journal of Remote Sensing,2003,24(9):1835-1852.

[6] 胥海威,何宽.改进随机决策树群算法在监督分类中的应用[J].地理与地理信息科学,2010,26(6):38-40. Xu H W,He K.An improved random decision trees algorithm with application to supervised classification[J].Geography and Geo-information Science,2010,26(6):38-40.

[7] Haralick R M.Statistical and structural approaches to texture[J].Proceedings of the IEEE,1979,67(5):786-804.

[8] 陈贝贝,颜梅春,李致家,等.分类器和时相结合的流域下垫面分类方法[J].测绘科学,2014,39(9):141-144. Chen B B,Yan M C,Li Z J,et al.Basin underlying surface classification based on classifiers and phase combined[J].Science of Surveying and Mapping,2014,39(9):141-144.

[9] 颜梅春.高分辨率影像的植被分类方法对比研究[J].遥感学报,2007,11(2):235-240. Yan M C.Research and contrast on several vegetation-classification methods of high-resolution satellite image data[J].Journal of Remote Sensing,2007,11(2):235-240.

[10] 袁林山,杜培军,张华鹏,等.基于决策树的CBERS遥感影像分类及分析评价[J].国土资源遥感,2006,18(2):92-98.doi:10.6046/gtzyyg.2008.02.22. Yuan L S,Du P J,Zhang H P,et al.CBERS imagery classification based on decision tree and derformance analysis[J].Remote Sensing for Land and Resources,2006,18(2):92-98.doi:10.6046/gtzyyg.2008.02.22.

[1] 陈洁,高子弘,王珊珊,金鼎坚. 三峡库区航空遥感地质调查技术发展综述[J]. 国土资源遥感, 2020, 32(2): 1-10.
[2] 童立强,裴丽鑫,涂杰楠,郭兆成,余江宽,范景辉,李丹丹. 冰崩灾害的界定与类型划分——以青藏高原地区为例[J]. 国土资源遥感, 2020, 32(2): 11-18.
[3] 王川,范景辉,林思美,饶月明,黄华国. 光学遥感植被指数与SAR遥感参数的相关性及其主要影响因素研究[J]. 国土资源遥感, 2020, 32(2): 130-137.
[4] 冯力力,江利明,柳林,孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
[5] 殷亚秋,杨金中,汪洁,安娜,姜赟. 长江经济带废弃矿山占损土地遥感调查与生态修复对策[J]. 国土资源遥感, 2020, 32(2): 170-176.
[6] 张春森,吴蓉蓉,李国君,崔卫红,冯晨轶. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19-25.
[7] 石海岗,梁春利,张建永,张春雷,程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[8] 金楷仑,郝璐. 基于遥感数据与SEBAL模型的江浙沪地区地表蒸散反演[J]. 国土资源遥感, 2020, 32(2): 204-212.
[9] 王碧晴,韩文泉,许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[10] 古海玲,陈超,芦莹,褚衍丽. 基于卫星遥感技术的区域经济发展模型构建[J]. 国土资源遥感, 2020, 32(2): 226-232.
[11] 刘晰,郝利娜,杨显华,黄洁,张志,杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[12] 孙玉梅,王保云,张祝鸿,韩文科,孙显辰,张玲莉. 基于结构相似区域搜索的TM影像细小河流提取方法[J]. 国土资源遥感, 2020, 32(2): 63-72.
[13] 康晋洁,戚浩平,杨清华,陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[14] 付丽华,张策. 基于高分遥感数据的西藏荣勒地区控矿信息提取[J]. 国土资源遥感, 2020, 32(1): 98-105.
[15] 王海庆,郝建亭,李丽,安娜,许文佳,殷亚秋. 西藏各行政区矿产开采强度遥感分析[J]. 国土资源遥感, 2020, 32(1): 115-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发