Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (2): 99-105    DOI: 10.6046/gtzyyg.2016.02.16
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于OMEGA影像火星北极冰盖季节性变化监测
张鼎凯1,2, 刘召芹2, 邸凯昌2, 岳宗玉2, 刘峰1, 芶盛2
1. 山东科技大学测绘科学与工程学院, 青岛 266590;
2. 中国科学院遥感与数字地球 研究所遥感科学国家重点实验室, 北京 100101
Monitoring of seasonal changes of Martian north polar ice cap with OMEGA images
ZHAGN Dingkai1,2, LIU Zhaoqin2, DI Kaichang2, YUE Zongyu2, LIU Feng1, GOU Sheng2
1. Survey and Mapping Institute of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China;
2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(6780 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

火星两极冰盖每年季节性消融的空间范围变化是火星全球及区域气候变化最直观的反映,针对火星冰盖监测提出了一种利用欧空局火星快车搭载的OMEGA高光谱成像数据提取季节性冰盖消融线的方法。基于28至29火星年覆盖火星北半球6个时段的OMEGA红外波段影像,利用监督分类方法辨别冰层与裸地,以提取季节性冰盖的边界,计算了火星北半球季节性冰盖消融速度,并利用高分辨率HiRISE 数据验证了本文研究方法的正确性。研究结果表明,火星北极季节性冰盖的消融速度是每隔太阳经度(LS)10°冰层消融106 km2; 通过对比MOLA激光高度计数据和地形数据,发现局部区域冰盖消融异常原因主要为撞击坑引起的地形变化所致。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张登荣
许思莹
谢斌
吴文渊
路海峰
关键词 椒江-台州湾滩涂围垦土地利用变化遥感    
Abstract

The spatial variation extent of the annual seasonal melt of Martian polar ice caps is the most direct reflection of Mars global and regional climate changes. A method that utilizes hyperspectral images from OMEGA spectrometer on board ESA Mars Express for monitoring Mars ice cap by extracting seasonal ice cap ablation line is proposed in this study. Based on OMEGA infrared images from 6 periods of Martian year 28 and 29 that cover Martian northern hemisphere, the boundary of seasonal ice cap was extracted by supervised classification method which can distinguish between ice and bare land, and the melting rate of seasonal ice cap was also calculated and analyzed, with validation from high resolution HiRISE images. The results show that the melting rate of Martian northern polar ice cap is about 106 km2 every 10° solar longitude (LS). In addition, the comparison between the results and the terrain data from MOLA reveals that the regional abnormality of ice cap melting is mainly caused by the crater-induced topographic variation.

Key wordsJiaojiang-Taizhou Estuary    reclamation of mud flats    land use change    remote sensing
收稿日期: 2014-11-26      出版日期: 2016-04-14
:  TP79  
基金资助:

国家自然科学基金项目"火星壁垒撞击坑成因机制分析及数值模拟"(编号: 41472303)资助。

通讯作者: 刘召芹(1973-),男,博士,副研究员,主要从事遥感制图与探测车导航定位方面的研究。Email: liuzq@radi.ac.cn。
作者简介: 张鼎凯(1987-),男,硕士生,主要从事行星遥感制图方面的研究。Email: zhangdk123@sina.com。
引用本文:   
张鼎凯, 刘召芹, 邸凯昌, 岳宗玉, 刘峰, 芶盛. 基于OMEGA影像火星北极冰盖季节性变化监测[J]. 国土资源遥感, 2016, 28(2): 99-105.
ZHAGN Dingkai, LIU Zhaoqin, DI Kaichang, YUE Zongyu, LIU Feng, GOU Sheng. Monitoring of seasonal changes of Martian north polar ice cap with OMEGA images. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 99-105.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.02.16      或      https://www.gtzyyg.com/CN/Y2016/V28/I2/99

[1] Bibring J P,Langevin Y,Poulet F,et al.Perennial water ice identified in the south polar cap of Mars[J].Nature,2004,428(6983):627-630.

[2] Langevin Y,Poulet F,Bibring J P,et al.Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars express[J].Science,2005,307(5715):1581-1584.

[3] Schmitt B,Schmidt F,Douté S,et al.Recession of the northern seasonal condensates on Mars by OMEGA/Mars express[J].LPI Contributions,2006,1323:8050.

[4] Paige D A,Herkenhoff K E,Murray B C.Mariner 9 observations of the south polar cap of Mars:Evidence for residual CO2 frost[J].Journal of Geophysical Research:Solid Earth,1990,95(B2):1319-1335.

[5] Feldman W C,Prettyman T H,Boynton W V,et al.CO2 frost cap thickness on Mars during northern winter and spring[J].Journal of Geophysical Research:Planets,2003,108(E9):5103.

[6] Schmidt F.Douté S,Schmitt B,et al.Automatic detection of H2O and CO2 ices in OMEGA/MEX images for the monitoring of the south polar cap recession[C]//Schmidt F,Douté S,Schmitt B,et al.Proceedings of the 37th annual lunar and planetary science conference.League,Texas:LPI,2006:1979.

[7] Smith D E,Zuber M T,Neumann G A.Seasonal variations of snow depth on Mars[J].Science,2001,294(5549):2141-2146.

[8] Antoniadi E M.La Planete Mercure Et La Rotation Des Satellites;Etude Basee Sur Les Resultats Obtenus Avec La Grande Lunette De L'observatoire de Meudon[M].Paris:Gauthier-Villars,1934.

[9] Fischbacher G E,Martin L J,Baum W A,et al.Seasonal behavior of the martian polar caps[J].Publications of the Astronomical Society of the Pacific,1969,81:538.

[10] Cantor B A,Wolff M J,James P B,et al.Recession of martian north polar cap:1990—1997 hubble space telescope observations[J].Bulletin of the American Astronomical Society,1997,29:963.

[11] Capen C F,Capen V W.Martian north polar cap,1962—1968[J].Icarus,1970,13(1):100-108.

[12] Iwasaki K,Saito Y,Akabane T.Behavior of the martian north polar cap,1975—1978[J].Journal of Geophysical Research:Solid Earth(1978-2012),1979,84(B14):8311-8316.

[13] Iwasaki K,Saito Y,Akabane T.Martian north polar cap 1979—1980[J].Journal of Geophysical Research:Solid Earth(1978—2012),1982,87(B12):10265-10269.

[14] Iwasaki K,Parker D C,Larson S,et al.Martian north polar cap 1996—1997[J].Icarus,1999,138(1):20-24.

[15] Benson J L,James P B.Yearly comparisons of the martian polar caps:1999—2003 Mars orbiter camera observations[J].Icarus,2005,174(2):513-523.

[16] James P B.Recession of martian north polar cap:1977—1978 viking observations[J].Journal of Geophysical Research:Solid Earth(1978—2012),1979,84(B14):8332-8334.

[17] James P B,North G R.The seasonal CO2 cycle on Mars:An application of an energy balance climate model[J].Journal of Geophysical Research,1982,87(B):10271-10283.

[18] James P B,Cantor B A.Martian north polar cap recession:2000 Mars orbiter camera observations[J].Icarus,2001,154(1):131-144.

[19] Giuranna M,Hansen G,Formisano V,et al.Spatial variability,composition and thickness of the seasonal north polar cap of Mars in mid-spring[J].Planetary and Space Science,2007,55(10):1328-1345.

[20] Appéré T,Schmitt B,Langevin Y,et al.Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars express[J].Journal of Geophysical Research,2011,116(E5):E05001.

[21] Clancy R T,Sandor B J,Wolff M J,et al.An intercomparison of ground-based millimeter,mgs tes,and viking atmospheric temperature measurements:Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere[J].Journal of Geophysical Research:Planets(1991—2012),2000,105(E4):9553-9571.

[22] Chicarro A,Martin P,Trautner R.The Mars Express Mission:An Overview[M]//Wilson A.Mars Express:The Scientific Payload.Noordwijk,Netherlands:ESA Publications Division,2004,1240:3-13.

[23] Bibring J P,Soufflot A,Berthé M,et al.OMEGA:Observatoire pour la Minéralogie,l'Eau,les Glaces et l'Activité[M]//Wilson A.Mars Express:The Scientific Payload.Noordwijk,Netherlands:ESA Publications Division,2004,1240:37-49.

[24] 胡全一,祝民强.火星高光谱遥感大气校正方法[J].东华理工大学学报:自然科学版,2008,31(3):242-248. Hu Q Y,Zhu M Q.Methods of atmospheric correction for hyperspectral remote sensing on Mars[J].Journal of East China Institute of Technology:Natural Science Edition,2008,31(3):242-248.

[25] Langevin Y,Vincendon M,Bibring J P,et al.Multi-band processing of observations of the polar regions of Mars with the Omega imaging spectrometer on board Mars express[C]//Proceedings of the 2nd Hyperspectral Image and Signal Processing:Evolution in Remote Sensing.Reykjavik:IEEE,2010:1-4.

[26] James P B,Clancy R T,Lee S W,et al.Monitoring Mars with the hubble space telescope:1990—1991 observations[J].Icarus,1994,109(1):79-101.

[27] Zuber M T,Smith D E,Solomon S C,et al.Observations of the north polar region of Mars from the Mars orbiter laser altimeter[J].Science,1998,282(5396):2053-2060.

[28] Fray N,Schmitt B.Sublimation of ices of astrophysical interest:A bibliographic review[J].Planetary and Space Science,2009,57(14/15):2053-2080.

[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[5] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[6] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[7] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[8] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[9] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[10] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[11] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[12] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[13] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[14] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[15] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发