Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (3): 25-30    DOI: 10.6046/gtzyyg.2016.03.05
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于DInSAR技术与断层自动剖分方法反演断层滑动参数
陈丹蕾1, 刘国祥2, 王晓文2, 王蕾1, 蒲慧龙1
1. 四川省第三测绘工程院, 成都 610500;
2. 西南交通大学地球科学与环境工程学院, 成都 610031
Inversion of fault slip parameters based on DInSAR and automated fault model discretization method
CHEN Danlei1, LIU Guoxiang2, WANG Xiaowen2, WANG Lei1, PU Huilong1
1. The Third Engineering Institution of Surveying and Mapping of Sichuan, Chengdu 610500, China;
2. Faculty of Geosciences and Environmental Engineering, Sourthwest Jiaotong University, Chengdu 610031, China
全文: PDF(2802 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以合成孔径雷达差分干涉测量(DInSAR)技术获得的同震形变数据为约束,基于弹性位错模型反演获得发震断层的几何、运动参数(也称滑动参数),对于了解震区断层活动特征和评估潜在灾害风险具有重要意义。现有的断层滑动参数反演多是基于矩形位错元的均匀剖分或人为设定剖分,所得结果易出现"伪滑动"和滑动分布过于平滑的问题,不足以精确地反映断层面上的滑动细节。为此,引入断层自动剖分方法。该方法兼顾了模型残差最小化与平滑最优原则,在形变数据的有效约束下获得可靠解。以巴姆地震为例反演获得断层的几何参数与滑动参数。实验结果表明,对于单断层的滑动参数反演,应用断层自动剖分方法可获得较可靠的结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雪
李培军
姜莎莎
刘婧
宋本钦
关键词 建筑物提取高分辨率图像机载LiDAR阴影冷色屋顶多层次    
Abstract

The inversion of geometry and motion parameters of the seismogenic fault based on elastic dislocation model and constrained by coseismic deformation data obtained by DInSAR has great significance for understanding the activity characteristics of the fault and assessing the risk of potential disasters. The existing inversion methods of fault slip parameters are mostly based on the uniform discretization with rectangular dislocation units or artificially setting discretizaiton, which will lead to "pseudo-slip" or the phenomenon that the slip distribution is too smooth to reflect the slip details on the fault plane. Therefore, the automated fault model discetization method is introduced in this paper, which takes into account the principle of the minimized residuals and the optimal smoothing scales of the model, so the reliable solution can be obtained under the effective constraints. The inversion of geometry and slip parameters of fault in Bam earthquake is taken as an example. The experimental results show that using the automated fault model discretization method to invert the motion parameters of the single fault can generate reliable results.

Key wordsbuilding extraction    very high resolution imagery    airborne LiDAR    shadow    cool-colored roof    multi-level
收稿日期: 2015-02-02      出版日期: 2016-07-01
:  TP79  
基金资助:

四川省测绘地理信息局科技计划项目"基于Web的四川省地理国情监测数据成果展示方法与实现"(编号:J2014ZC16)资助。

作者简介: 陈丹蕾(1987-),女,硕士研究生,助理工程师,主要从事InSAR技术应用与遥感应用等方面的科研工作。Email:281560206@qq.com。
引用本文:   
陈丹蕾, 刘国祥, 王晓文, 王蕾, 蒲慧龙. 基于DInSAR技术与断层自动剖分方法反演断层滑动参数[J]. 国土资源遥感, 2016, 28(3): 25-30.
CHEN Danlei, LIU Guoxiang, WANG Xiaowen, WANG Lei, PU Huilong. Inversion of fault slip parameters based on DInSAR and automated fault model discretization method. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 25-30.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.03.05      或      https://www.gtzyyg.com/CN/Y2016/V28/I3/25

[1] 洪顺英,申旭辉,单新建,等.基于升降轨ASAR的于田Ms 7.3级地震同震形变场信息提取与分析[J].国土资源遥感,2010,22(4):98-102.doi:10.6046/gtzyyg.2010.04.20. Hong S Y,Shen X H,Shan X J,et al.The calculation and analysis of the co-seismic deformation field of Yutian Ms 7.3 earthquake basing on the ascending and descending orbit ASAR data[J].Remote Sensing for Land and Resource,2010,22(4):98-102.doi:10.6046/gtzyyg.2010.04.20.
[2] 罗旭巍,孙建宝,沈正康,等.基于InSAR同震形变观测反演2010年新西兰南岛Mw7.1 Darfield地震同震破裂分布[J].地球物理学报,2013,56(8):2613-2624. Luo X W,Sun J B,Shen Z K,et al.Co-seismic slip distribution of 2010 Darfield, New Zealand Mw7.1 earthquake inverted using InSAR measurements[J].Chinese Journal of Geophysics,2013,56(8):2613-2624.
[3] 薛莲,孙建宝,沈正康.2010年1月12日海地Mw7.0级地震InSAR同震形变观测及同震滑动分布反演[J].地震地质,2011,33(1):157-174. Xue L,Sun J B,Shen Z K.InSAR coseismic deformation observation of the Jan 12th, 2010 HaiTi earthquake and its coseismic slip distribution inversion[J].Seismology and Geology,2011,33(1):157-174.
[4] 周辉,冯光财,李志伟,等.利用InSAR资料反演缅甸Mw6.8地震断层滑动分布[J].地球物理学报,2013,56(9):3011-3021. Zhou H,Feng G C,Li Z W,et al.The fault slip distribution of the Myanmar Mw6.8 earthquake inferred from InSAR measurements[J].Chinese Journal of Geophysics,2013,56(9):3011-3021.
[5] 温扬茂,何平,许才军,等.联合Envisat和ALOS卫星影像确定L'Aquila地震震源机制[J].地球物理学报,2012,55(1):53-65. Wen Y M,He P,Xu C J,et al.Source parameters of the 2009 L'Aquila earthquake, Italy from Envisat and ALOS satellite SAR images[J].Chinese Journal of Geophysics,2012,55(1):53-65.
[6] Resor P G,Pollard D D,Wright T J,et al.Integrating high-precision aftershock locations and geodetic observations to model coseismic deformation associated with the 1995 Kozani-Grevena earthquake,Greece[J].Journal of Geophysical Research:Solid earth,2005,110(B9):B09402.
[7] Walters R J,Elliott J R,D'Agostino N,et al.The 2009 L'Aquila earthquake(central Italy):A source mechanism and implications for seismic hazard[J].Geophysical Research Letters,2009,36(17):L17312.
[8] 张国宏,屈春燕,汪驰升,等.基于GPS和InSAR反演汶川Mw7.9地震断层滑动分布[J].大地测量与地球动力学,2010,30(4):19-24. Zhang G H,Qu C Y,Wang C S,et al.Inversion of slip distribution of 2008 Wenchuan Mw7.9 earthquake constrained jointly by InSAR and GPS measurements[J].Journal of Geodesy and Geodynamics,2010,30(4):19-24.
[9] Barnhart W D,Lohman R B.Automated fault model discretization for inversions for coseismic slip distributions[J].Journal of Geophysical Research,2010,115(B10):B10419.
[10] Meade B J.Algorithms for the calculation of exact displacements,strains, and stresses for triangular dislocation elements in a uniform elastic half space[J].Computer and Geosciences,2007,33(8):1064-1075.
[11] Golub G H,Hansen P C,O'Leary D P.Tikhonov regularization and total least squares[J].SIAM Journal on Matrix Analysis and Applications,1999,21(1):185-194.
[12] Du Y J,Aydin A,Segall P.Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake[J].Bulletin of the Seismological Society of America,1992,82(4):1840-1866.
[13] Okada Y.Surface deformation due to shear and tensile faults in a half-space[J].Bulletin of the Seismological Society of America,1985,75(4):1135-1154.
[14] 凌勇,曾祺明,罗扬,等.巴姆地震变形场和应力场:I.用差分干涉雷达和Okada方法求解[J]. 岩石学报,2006,22(9):2367-2374. Ling Y,Zeng Q M,Luo Y,et al.Deformation and stress field of Bam earthquake:Ⅰ.InSAR and Okada calculation[J].Acta Petrologica Sinica,2006,22(9):2367-2374.

[1] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[2] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[3] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[4] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[5] 孟蕾, 林超. 机载LiDAR技术生成DEM的质量检查与解决方案探讨[J]. 国土资源遥感, 2020, 32(1): 7-12.
[6] 党涛, 宋起, 刘勇, 徐安建, 徐波, 张宏刚. 基于多层次分割分类模型及其特征空间优化的建筑物提取方法[J]. 国土资源遥感, 2019, 31(3): 111-122.
[7] 薛理, 杨树文, 马吉晶, 贾鑫, 闫如柳. 遥感影像阴影自动扩充提取算法[J]. 国土资源遥感, 2019, 31(1): 42-48.
[8] 闫利, 李瑶, 谢洪. 基于机载与车载LiDAR数据的LoD3城市建筑物模型自动重建[J]. 国土资源遥感, 2018, 30(4): 97-101.
[9] 付盈, 国巧真, 潘应阳, 汪东川. 基于SPOT6数据的建筑物提取规则研究[J]. 国土资源遥感, 2017, 29(3): 65-69.
[10] 李佳俊, 钟若飞. 轻小型机载LiDAR的航线设计[J]. 国土资源遥感, 2017, 29(2): 97-103.
[11] 王旭东, 段福洲, 屈新原, 李丹, 余攀锋. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017, 29(1): 97-103.
[12] 王瑾杰, 丁建丽, 张成, 陈文倩. 基于GF-1卫星影像的改进SWI水体提取方法[J]. 国土资源遥感, 2017, 29(1): 29-35.
[13] 鹿丰玲, 巩在武. 基于随机森林算法构建云-云阴影-水体掩模[J]. 国土资源遥感, 2016, 28(3): 73-79.
[14] 王雪, 李培军, 姜莎莎, 刘婧, 宋本钦. 利用机载LiDAR数据和高分辨率图像提取复杂城区建筑物[J]. 国土资源遥感, 2016, 28(2): 106-111.
[15] 董保根, 车森, 解龙根, 单国慧, 何乔. Mode滤波器及其在遥感分类后处理中的应用[J]. 国土资源遥感, 2016, 28(2): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发