Please wait a minute...
国土资源遥感  2016, Vol. 28 Issue (3): 37-45    DOI: 10.6046/gtzyyg.2016.03.07
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于中心对称局部相似数量模型的均值漂移目标跟踪
刘威1, 赵文杰1, 李成1, 李婷1, 谭海峰1, 马扬铭2
1. 空军航空大学航空航天情报系, 长春 130022;
2. 解放军73608部队, 南京 210000
Mean shift object tracking based on center symmetric-local similarity number model
LIU Wei1, ZHAO Wenjie1, LI Cheng1, LI Ting1, TAN Haifeng1, MA Yangming2
1. Department of Aerospace Intelligence, Aviation University of Air Force, Changchun 130022, China;
2. PLA 73608 Troop, Nanjing 210000, China
全文: PDF(6209 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为实现对运动目标的实时跟踪,提出中心对称局部相似数量(center symmetric-local similarity number,CS-LSN)这一新的局部显著度纹理描述算子,并将其引入到目标表征模型。该算子通过分析中心像素及其8邻域像素之间的大小关系,在局部相似数量(local similarity number,LSN)纹理算子的基础上,针对其无法区分同一局部显著度下的不同纹理结构的问题,增加以中心像素为对称点的局部梯度信息,提取出候选目标区域中具有CS-LSN主要模式的真实目标像素,有效地抑制了背景像素的影响并减少了后续目标表征模型的计算量;利用真实目标像素的CS-LSN纹理特征和色度特征构建直方图,完成目标表征;进而将其嵌入到均值漂移(mean shift,MS)框架完成跟踪。实验结果表明,该方法在目标与背景相似、部分遮挡、光照变化及物体形变等情况下均能完成鲁棒跟踪,目标大小为29像素×25像素时,处理速度约为25帧/s,可满足实时应用的需求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕凯
黄少林
关键词 无人机土地调查工作底图航空摄影正射影像图    
Abstract

In order to complete the task of real-time object tracking, this paper proposes a new local texture description operator, which is called center symmetric-local similarity number(CS-LSN). The operator analyzed the center pixel and its eight neighborhood pixels, on the basis of the local similarity number (LSN); as the texture operator fails to distinguish the same local saliency of different texture structures, the authors added the local gradient information using the center pixel as the symmetric point, extracted the key pixels which correspond only to the five major patterns of the CS-LSN in the target candidate region, effectively restrained the influence of the background pixels and reduced the computation in the target representation model, and then represented target by CS-LSN texture feature and the chromaticity in the true target pixel, which was embedded into the mean shift(MS) tracking framework. The experimental results show that the proposed method can continuously track the target when the background and the color are similar under the condition of changing illumination and in the occlusion cases. The processing speed can reach 25 frames or so per second when the object is 29 pixel×25 pixel, so it can satisfy the demand of real-time application.

Key wordsUAV    land survey    base-map    aerial photography    DOM
收稿日期: 2015-04-03      出版日期: 2016-07-01
ZTFLH:  TP751.1  
  TP391  
作者简介: 刘威(1991-),男,硕士研究生,主要研究方向为计算机视觉及目标跟踪。Email:1224337250@qq.com。
引用本文:   
刘威, 赵文杰, 李成, 李婷, 谭海峰, 马扬铭. 基于中心对称局部相似数量模型的均值漂移目标跟踪[J]. 国土资源遥感, 2016, 28(3): 37-45.
LIU Wei, ZHAO Wenjie, LI Cheng, LI Ting, TAN Haifeng, MA Yangming. Mean shift object tracking based on center symmetric-local similarity number model. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 37-45.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.03.07      或      http://www.gtzyyg.com/CN/Y2016/V28/I3/37

[1] Maggio E,Cavallaro A.Video Tracking:Theory and Practice[M].London,UK:Queen Mary University of London,2012.
[2] Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
[3] 杨欣,费树岷,李刚,等.基于复杂特征融合的改进mean shift目标跟踪[J].控制与决策,2014,29(7):1297-1300. Yang X,Fei S M,Li G,et al.Improved mean shift tracking algorithm based on complicated feature fusion[J].Control and Decision,2014,29(7):1297-1300.
[4] Vojir T,Noskova J,Matas J.Robust scale-adaptive mean-shift for tracking[J].Pattern Recognition Letters,2014,49:250-258.
[5] Li S X,Wu O,Zhu C F,et al.Visual object tracking using spatial context information and global tracking skills[J].Computer Vision and Image Understanding,2014,125:1-15.
[6] 董文会,常发亮,李天平.融合颜色直方图及SIFT特征的自适应分块目标跟踪方法[J].电子与信息学报, 2013,35(4):770-776. Dong W H,Chang F L,Li T P.Adaptive fragments-based target tracking method fusing color histogram and SIFT features[J].Journal of Electronics and Information Technology,2013,35(4):770-776.
[7] Maenpaa T,Pietikainen M.Texture analysis with local binary patterns[M]//Handbook of Pattern Recognition and Computer Vision.USA:World Scientific Pub.Co.Inc,2005:197-216.
[8] Ning J F,Zhang L,Zhang D,et al.Robust object tracking using joint color-texture histogram[J].International Journal of Pattern Recognition and Artificial Intelligence,2009,23(7):1245-1263.
[9] 张涛,蔡灿辉.基于多特征Mean Shift的人脸跟踪算法[J].电子与信息学报,2009,31(8):1816-1820. Zhang T,Cai C H.A face tracking algorithm based on multiple feature mean shift[J].Journal of Electronics & Information Technology,2009,31(8):1816-1820.
[10] 张炯,宁记峰,颜永丰,等.对立色LBP模型的目标跟踪[J].中国图象图形学报,2012,17(11):1418-1424. Zhang J,Ning J F,Yan Y F,et al.Object tracking with opponent color LBP model[J].Journal of Image and Graphics,2012,17(11):1418-1424.
[11] Borji A,Itti L.State-of-the-art in visual attention modeling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):185-207.
[12] 黎万义,王鹏,乔红.引入视觉注意机制的目标跟踪方法综述[J].自动化学报,2014,40(4):561-576. Li W Y,Wang P,Qiao H.A survey of visual attention based methods for object tracking[J].Acta Automatica Sinica,2014,40(4):561-576.
[13] Tavakoli H R,Moin M S,Heikkila J.Local similarity number and its application to object tracking[J].International Journal of Advanced Robotic Systems,2013,10:184.
[14] 张红颖,胡正.融合局部三值数量和色度信息的均值漂移跟踪[J].电子与信息学报,2014,36(3):624-630. Zhang H Y,Hu Z.Mean Shift tracking method combing local ternary number with hue information[J].Journal of Electronics and Information Technology,2014,36(3):624-630.
[15] Heikkila M,Pietikainen M,Schnid C.Description of interest regions with local binary patterns[J].Pattern Recognition,2009,42(3),425-436.
[16] 陈东成,朱明,高文,等.在线加权多示例学习实时目标跟踪[J].光学精密工程,2014,22(6):1661-1667. Chen D C,Zhu M,Gao W,et al.Real-time object tracking via online weighted multiple instance learning[J].Optics and Precision Engineering,2014,22(6):1661-1667.
[17] Kalal Z,Mikolajczyk K,Matas J.Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422.
[18] Babenko B,Yang M H,Belongie S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632.

[1] 薛武,赵玲,于英. 无人机影像稳健区域网平差[J]. 国土资源遥感, 2020, 32(2): 40-45.
[2] 娄佩卿,陈晓雨,王疏桐,付波霖,黄永怡,唐廷元,凌铭. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020, 32(1): 216-223.
[3] 王永全,李清泉,汪驰升,朱家松,王新雨. 基于系留无人机的应急测绘技术应用[J]. 国土资源遥感, 2020, 32(1): 1-6.
[4] 林志玮,涂伟豪,黄嘉航,丁启禄,周铮雯,刘金福. 基于FC-DenseNet的低空航拍光学图像树种识别[J]. 国土资源遥感, 2019, 31(3): 225-233.
[5] 梁林林,江利明,周志伟,陈玉兴,孙亚飞. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感, 2019, 31(2): 180-186.
[6] 李莹,于海洋,王燕,吴建鹏,杨礼. 基于无人机重建点云与影像的城市植被分类[J]. 国土资源遥感, 2019, 31(1): 149-155.
[7] 孙长奎,刘善磊,王圣尧,陈超,沈泉飞,石善球,王玮. 浅谈无人机遥感技术在智慧城市建设中的应用[J]. 国土资源遥感, 2018, 30(4): 8-12.
[8] 王祥,王新新,苏岫,孟庆辉,邹德君,伊晓东,王林,文世勇,赵建华. 无人机平台航空遥感监测核电站温排水——以辽宁省红沿河核电站为例[J]. 国土资源遥感, 2018, 30(4): 182-186.
[9] 向杰,陈建平,李诗,赖自力,黄浩中,刘静,谢帅. 无人机遥感技术在北京首云铁矿储量动态监测中的应用[J]. 国土资源遥感, 2018, 30(3): 224-229.
[10] 任丽艳,李英成,薛艳丽,丁晓波,吴豪. 基于北斗技术的无人机飞行监管系统开发与应用[J]. 国土资源遥感, 2018, 30(2): 238-242.
[11] 余忠迪,李辉,巴芳,王朝阳. 基于消费者级无人机的城市三维建模[J]. 国土资源遥感, 2018, 30(2): 67-72.
[12] 杨如军, 谢国雪. 国产卫星数据在国土资源监管中的探讨——以广西壮族自治区为例[J]. 国土资源遥感, 2017, 29(s1): 52-57.
[13] 李朋龙, 丁忆, 胡艳, 罗鼎, 段松江, 舒文强. 一种基于GPU并行计算的无人机影像快速镶嵌方法[J]. 国土资源遥感, 2017, 29(4): 57-63.
[14] 吴永亮, 陈建平, 姚书朋, 徐彬. 无人机低空遥感技术应用[J]. 国土资源遥感, 2017, 29(4): 120-125.
[15] 薛武, 马永政, 赵玲, 莫德林. 无人机农村宅基地高精度确权应用[J]. 国土资源遥感, 2017, 29(3): 124-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发