Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (3): 60-66    DOI: 10.6046/gtzyyg.2016.03.10
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
双台河口国际重要湿地芦苇地上生物量遥感估算
梁建平1,2, 马大喜1, 毛德华2, 王宗明2
1. 江西理工大学建筑与测绘工程学院, 赣州 341000;
2. 中国科学院东北地理与农业生态研究所, 湿地生态与环境重点实验室, 长春 130102
Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve
LIANG Jianping1,2, MA Daxi1, MAO Dehua2, WANG Zongming2
1. Jiangxi University of Science and Technology, Ganzhou 341000, China;
2. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
全文: PDF(2469 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于多时相的Landsat8 OLI卫星遥感数据,采用面向对象的分类方法,提取双台河口国际重要湿地芦苇分布信息。通过对归一化植被指数(normalized difference vegetation index,NDVI)等6个植被指数与野外实测芦苇地上生物量数据间的统计分析,比较不同植被指数对芦苇地上生物量的敏感性,构建双台河口国际重要湿地芦苇地上生物量遥感反演模型;应用该模型对芦苇地上生物量进行遥感反演以及空间格局分析。结果表明:双台河口国际重要湿地芦苇分布面积为4.39×104 hm2,约占该研究区总面积32.96%;选取的6个植被指数均与芦苇地上生物量显著相关(p<0.05),其中,以NDVI为变量的幂指数形式的估算模型为芦苇地上生物量遥感估算最优模型,模拟精度为79%,决策系数为0.76;双台河口国际重要湿地芦苇地上生物量呈东高西低和北高南低的分布格局,其平均地上生物量为4785.5 g/m2,总地上生物量为2.06×106 t;本研究结果可为双台河口国际重要湿地生态系统管理和生物多样性保护提供数据支持与科学指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆丁滒
吴虹
郭琪
陈梦杰
关键词 Google Earth漓江流域水系特征信息提取控制因素    
Abstract

With the object-oriented classification method, the spatial distribution of Phragmites australis was obtained based on multi-temporal Landsat8 OLI data covering Shuangtai Estuary National Nature Reserve. By analyzing the sensitivity between different vegetation indexes and aboveground biomass (AGB) of Phragmites australis, the retrieval model of AGB for Phragmites australis was developed. Furthermore, the spatial pattern of AGB for Phragmites australis was observed. The results showed that the area of Phragmites australis was 4.39×104 hm2, accounting for 32.96% of the study area of the Shuangtai Estuary National Nature Reserve. Selecting NDVI as the variable for the power function, the authors formulated the optimal model for estimating AGB of Phragmites australis with an estimation accuracy of 79%. Average AGB of Phragmites australis was 4785.5 g/m2 and total AGB was 2.06×106 t. High values of AGB were observed in the northeast part, while low AGB values in the southwest. The results obtained in this study would provide data to support wetland ecosystem management and scientific guidance for Shuangtai Estuary National Nature Reserve.

Key wordsGoogle Earth    Lijiang River basin    drainage characteristics    information extraction    control factor
收稿日期: 2015-04-30      出版日期: 2016-07-01
:  TP79  
基金资助:

国家自然科学基金项目"应用遥感信息定量区分气候变化和人类活动对沼泽湿地植被NPP的影响"(编号:41401502)和"基于优化植被指数的草本湿地植被净初级生产力遥感估算"(编号:41371403)共同资助。

通讯作者: 毛德华(1987-),男,助理研究员,主要从事湿地生态遥感的研究。Email:maodehua@iga.ac.cn。
作者简介: 梁建平(1992-),男,硕士研究生,主要从事湿地生态遥感的研究。Email:liangxiao318@sina.cn。
引用本文:   
梁建平, 马大喜, 毛德华, 王宗明. 双台河口国际重要湿地芦苇地上生物量遥感估算[J]. 国土资源遥感, 2016, 28(3): 60-66.
LIANG Jianping, MA Daxi, MAO Dehua, WANG Zongming. Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 60-66.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.03.10      或      https://www.gtzyyg.com/CN/Y2016/V28/I3/60

[1] 江波,欧阳志云,苗鸿,等.海河流域湿地生态系统服务功能价值评价[J].生态学报,2011,31(8):2236-2244. Jiang B,Ouyang Z Y,Miao H,et al.Ecosystem services valuation of the Haihe River basin wetlands[J].Acta Ecologica Sinica,2011,31(8):2236-2244.
[2] Keddy P A.Wetland Ecology:Principles and Conservation[M].Cambridge:Cambridge University Press,2000.
[3] 刘兴土.东北湿地[M].北京:科学出版社,2005. Liu X T.Northeast Wetland[M].Beijing:Science Press,2005.
[4] 吕宪国,王升忠,姜明,等.中国湿地与湿地研究[M].石家庄:河北科学技术出版社,2008. Lyu X G,Wang S Z,Jiang M,et al.Study on Wetland and Wetland in China[M].Shijiazhuang:Hebei Science and Technology Publishing House,2008.
[5] 王莉雯,卫亚星.盘锦湿地净初级生产力时空分布特征[J].生态学报,2012,32(19):6006-6015. Wang L W,Wei Y X.Variation analysis about net primary productivity of the wetland in Panjin region[J].Acta Ecologica Sinica,2012,32(19):6006-6015.
[6] Moreau S,Bosseno R,Gu X F,et al.Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR[J].Remote Sensing of Environment,2003,85(4):516-529.
[7] Zheng D L,Rademacher J,Chen J Q,et al.Estimating aboveground biomass using Landsat 7 ETM+data across a managed landscape in northern Wisconsin,USA[J].Remote Sensing of Environment,2004,93(3):402-411.
[8] 王庆,廖静娟.基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演[J].地球信息科学学报,2010,12(2):2282-2291. Wang Q,Liao J J.Estimation of wetland vegetation biomass in the Poyang Lake area using Landsat TM and ENVISAT ASAR data[J].Journal of GEO-Information Science,2010,12(2):2282-2291.
[9] 吴涛,赵冬至,康建成,等.辽东湾双台子河口湿地翅碱蓬(Suaeda salsa)生物量遥感反演研究[J].生态环境学报,2011,20(1):24-29. Wu T,Zhao D Z,Kang J C,et al.Suaeda salsa dynamic remote monitoring and biomass remote sensing inversion in Shuangtaizi River estuary[J].Ecology and Environmental Sciences,2011,20(1):24-29.
[10] 李旭文,季耿善,杨静.太湖梅梁湖湾蓝藻生物量的遥感估算[J].遥感信息,1995(1):35-38. Li X W,Ji G S,Yang J.Estimating cyanophyta biomasss standing crops in meiliang gulf of Lake Taihu by satellite remote sensing[J].Remote Sensing Information,1995(1):35-38.
[11] Moreau S,Le Toan T.Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management[J].Remote Sensing of Environment,2003,84(4):477-492.
[12] Van T K,Rayachhetry M B,Center T D.Estimating above-ground biomass of Melaleuca quinquenervia in Florida,USA[J].Journal of Aquatic Plant Management,2000,38(1):62-67.
[13] 黎夏,叶嘉安,王树功,等.红树林湿地植被生物量的雷达遥感估算[J].遥感学报,2006,10(3):387-396. Li X,Ye J A,Wang S G,et al.Estimating mangrove wetland biomass using radar remote sensing[J].Journal of Remote Sensing,2006,10(3):387-396.
[14] 高明亮,赵文吉,宫兆宁,等.基于环境卫星数据的黄河湿地植被生物量反演研究[J].生态学报,2013,33(2):542-553. Gao M L,Zhao W J,Gong Z N,et al.The study of vegetation biomass inversion based on the HJ satellite data in Yellow River wetland[J].Acta Ecologica Sinica,2013,33(2):542-553.
[15] 徐东霞,章光新.人类活动对中国滨海湿地的影响及其保护对策[J].湿地科学,2007,5(3):282-288. Xu D X,Zhang G X.Impact of human activities on coastal wetlands in China[J].Wetland Science,2007,5(3):282-288.
[16] 陈克林,张小红,吕咏.气候变化与湿地[J].湿地科学,2003,1(1):73-77. Chen K L,Zhang X H,Lyu Y.Climate change and wetland[J].Wetland Science,2003,1(1):73-77.
[17] 李延峰,毛德华,王宗明,等.双台河口国家级自然保护区芦苇叶面积指数遥感反演与空间格局分析[J].湿地科学,2014,12(2):163-169. Li Y F,Mao D H,Wang Z M,et al.Remote sensing retrieval and spatial pattern analysis of leaf area index of Phragmites australis in Shuangtai estuary national nature reserve[J].Wetland Science,2014,12(2):163-169.
[18] 孙俊杰,马大喜,任春颖,等.基于多时相环境卫星数据的南瓮河流域湿地信息提取方法研究[J].湿地科学,2013,11(1):60-67. Sun J J,Ma D X,Ren C Y,et al.Method of extraction of wetlands information in Nanweng River Basin based on multi-temporal environment satellite images[J].Wetland Science,2013,11(1):60-67.
[19] 谢静,王宗明,毛德华,等.基于面向对象方法和多时相HJ-1影像的湿地遥感分类——以完达山以北三江平原为例[J].湿地科学,2012,10(4):429-438. Xie J,Wang Z M,Mao D H,et al.Remote sensing classification of wetlands using object-oriented method and multi-season HJ-1 images:A case study in the Sanjiang Plain north of the Wandashan Mountain[J].Wetland Science,2012,10(4):429-438.
[20] 宋小宁,赵英时.应用MODIS卫星数据提取植被-温度-水分综合指数的研究[J].地理与地理信息科学,2004,20(2):13-17. Song X N,Zhao Y S.Study on vegetation-temperature-water synthesis index using MODIS satellite data[J].Geography and Geo-Information Science,2004,20(2):13-17.
[21] 贾明明,王宗明,张柏,等.综合环境卫星与MODIS数据的面向对象土地覆盖分类方法[J].武汉大学学报:信息科学版,2014,39(3):305-310. Jia M M,Wang Z M,Zhang B,et al.Land cover classification of compositing HJ-1 and MODIS data based on object-based method[J].Geomatics and Information Science of Wuhan University,2014,39(3):305-310.
[22] Ji L,Wylie B K,Nossov D R,et al.Estimating aboveground biomass in interior Alaska with Landsat data and field measurements[J].International Journal of Applied Earth Observation and Geoinformation,2012,18:451-461.
[23] 卢纹岱.SPSS统计分析[M].4版.北京:电子工业出版社,2010. Lu W D.SPSS Statistical Analysis[M].4th ed.Beijing:Electronic Industry Press,2010.
[24] 罗玲,王宗明,任春颖,等.基于MODIS数据的松嫩草原产草量遥感估算模型与空间反演[J].农业工程学报,2010,26(5):182-187. Luo L,Wang Z M,Ren C Y.Models for estimation grassland production and spatial inversion based on MODIS data in Songnen Plain[J].Transactions of the CSAE,2010,26(5):182-187.
[25] 牛婷,李霞,林海军,等.塔里木河下游芦苇生物量遥感估算模型研建[J].国土资源遥感,2011,23(4):42-45.doi:10.6046/gtzyyg.2011.04.08. Niu T,Li X,Lin H J,et al.The construction of the remote sensing estimation models for reed biomass in the lower reaches of the Tarim River[J].Remote Sensing for Land and Resources,2011,23(4):42-45.doi:10.6046/gtzyyg.2011.04.08.
[26] 李延峰.东北典型区芦苇分布提取与地上生物量遥感估算[D].长春:中国科学院东北地理与农业生态研究所,2014. Li Y F.Phragmites Australis Extraction and Aboveground Biomass Estimation in Typical Regions of Northeast China,Using Remote Sensing Technology[D].Changchun:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,2014.
[27] 王丹,张银龙,庞博,等.苏州太湖湿地芦苇生物量与水深的动态特征研究[J].环境污染与防治,2010,32(7):49-54. Wang D,Zhang Y L,Pang B,et al.Study on dynamic characteristics between the biomass of Phragmites communis and water depth at Taihu wetland in Suzhou[J].Environmental Pollution and Control,2010,32(7):49-54.
[28] 赵文智,常学礼,李启森,等.荒漠绿洲区芦苇种群构件生物量与地下水埋深关系[J].生态学报,2003,23(6):1138-1146. Zhao W Z,Chang X L,Li Q S,et al.Relationship between structural component biomass of reed population and ground water depth in desert oasis[J].Acta Ecologica Sinica,2003,23(6):1138-1146.

[1] 方梦阳, 刘晓煌, 孔凡全, 李明哲, 裴小龙. 一种基于GEE平台制作逐年土地覆盖数据的方法——以黄河流域为例[J]. 自然资源遥感, 2022, 34(1): 135-141.
[2] 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1): 18-26.
[3] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[4] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[5] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[6] 舒慧勤, 方俊永, 鲁鹏, 顾万发, 王潇, 张晓红, 刘学, 丁兰坡. 基于多源高分辨率数据的遗址空间考古精细识别研究[J]. 国土资源遥感, 2021, 33(2): 162-171.
[7] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
[8] 牟晓莉, 李贺, 黄翀, 刘庆生, 刘高焕. Google Earth Engine在土地覆被遥感信息提取中的研究进展[J]. 国土资源遥感, 2021, 33(2): 1-10.
[9] 陈虹, 郭兆成, 贺鹏. 1988—2018年间洱海流域植被覆盖度时空变换特征探究[J]. 国土资源遥感, 2021, 33(2): 116-123.
[10] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[11] 王琳, 谢洪波, 文广超, 杨运航. 基于Landsat8的含蓝藻湖泊水体信息提取方法研究[J]. 国土资源遥感, 2020, 32(4): 130-136.
[12] 刘畅, 杨康, 程亮, 李满春, 郭紫燕. Landsat8不透水面遥感信息提取方法对比[J]. 国土资源遥感, 2019, 31(3): 148-156.
[13] 尹展, 张利军, 段建良, 张沛. 南方植被区强迫不变植被抑制技术改进与应用[J]. 国土资源遥感, 2019, 31(2): 82-88.
[14] 王月如, 韩鹏鹏, 关舒婧, 韩宇, 易琳, 周廷刚, 陈劲松. 基于Landsat8 OLI数据的富贵竹种植区域信息提取[J]. 国土资源遥感, 2019, 31(1): 133-140.
[15] 王勇, 张寅玲, 尤淑撑, 王忠武, 魏海, 李洋. 资源一号02C卫星数据在土地整理项目验收核查中的应用[J]. 国土资源遥感, 2018, 30(1): 144-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发