Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (3): 130-137    DOI: 10.6046/gtzyyg.2016.03.21
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例
孔金玲1, 杨晶1, 孙晓明2, 杨姝1, 柳富田2, 杜东2
1. 长安大学地球科学与资源学院, 西安 710054;
2. 天津地质矿产研究所, 天津 300170
Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: A case study of Caofeidian offshore area
KONG Jinling1, YANG Jing1, SUN Xiaoming2, YANG Shu1, LIU Futian2, DU Dong2
1. School of Earth Science and Resources, Chang'an University, Xi'an 710054, China;
2. Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China
全文: PDF(2459 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感影像的大气校正是遥感定量化研究的难点之一。以曹妃甸近岸海域为研究区,以水体悬浮泥沙浓度(suspended sediment concentration,SSC)定量反演为目标,采用6S(second simulation of the satellite signal in the solar spectrum)模型和FLAASH模型对研究区MODIS影像的大气校正方法进行对比实验,对2个模型校正前后的影像质量以及对目标地物信息的校正效果进行了评价。研究结果表明:2种模型均能在一定程度上削弱大气对水体信息的影响;相比之下,6S模型校正后影像质量优于FLAASH模型,能更真实地反映目标地物,可更好地实现对近岸海域遥感影像的高精度大气校正;将6S模型大气校正后的MODIS影像应用于悬浮泥沙浓度的遥感反演,反演结果的平均相对误差为24.79%,均方根误差为4.32 mg/L。研究结果可为近岸海域Ⅱ类水体大气校正方法的选择提供依据,为深化泥沙运移规律研究及水质、水环境评价提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李峰
米晓楠
刘军
刘小阳
关键词 NPP-VIIRS夜间灯光省域GDP土地利用GDP空间化    
Abstract

The atmospheric correction of remote sensing image is one of the difficulties in quantitative remote sensing research. In this paper, aimed at the suspended sediment concentration (SSC) levels retrieval in the Caofeidian offshore area, the authors performed a comparative test on atmospheric correction of MODIS image of the study area by 6S and FLAASH models, and then evaluated the corrected image quality and the correction effects of target information(normalized water index, NDWI). The results show that these two models could reduce the atmospheric effect on remote sensing information of water body to some extent. By comparison, the corrected image quality by 6S is better than that by FLAASH and could more truly reflect the target information; therefore, 6S model can better perform atmospheric correction of remote sensing images with a high precision in coastal waters. Subsequently, the MODIS image after atmospheric correction by 6S was applied to invert the SSC in the study area, and the inversion results show that the average relative error(MRE) and the root-mean-square error(RMSE)are 24.79% and 4.32 mg/L, respectively. The results can provide a basis for the selection of atmospheric correction methods in caseⅡwaters, thereby laying a foundation for the study of sediment transport law as well as evaluation of water quality and water environment.

Key wordsNPP-VIIRS    night-time light    provincial GDP    land use    GDP spatialization
收稿日期: 2015-10-13      出版日期: 2016-07-01
:  TP751.1  
基金资助:

国家自然科学基金项目"光学-微波遥感协同反演地表土壤水分的理论与方法"(编号:41272246)、中国地质调查局地质调查项目"河北曹妃甸滨海地区海岸带环境地质调查评价"(编号:1212011120086)、教育部科学技术研究重点项目"陕北煤炭开发区地面形变导致土壤水分损失的遥感分析"(编号:108183)和中央高校基本科研业务费专项资金项目"鄂尔多斯盆地土壤水分遥感反演"(编号:2013G3272013)共同资助。

作者简介: 孔金玲(1964-),女,博士,教授,主要从事定量遥感研究。Email:jlkong@163.com。
引用本文:   
孔金玲, 杨晶, 孙晓明, 杨姝, 柳富田, 杜东. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016, 28(3): 130-137.
KONG Jinling, YANG Jing, SUN Xiaoming, YANG Shu, LIU Futian, DU Dong. Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: A case study of Caofeidian offshore area. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 130-137.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.03.21      或      https://www.gtzyyg.com/CN/Y2016/V28/I3/130

[1] 阮建武,邢立新.遥感数字图像的大气辐射校正应用研究[J].遥感技术与应用,2004,19(3):206-208. Ruan J W,Xing L X.The application of atmospheric radiation correction on remotely sensed digital image[J].Remote Sensing Technology and Application,2004,19(3):206-208.
[2] 朱绍攀,陈宇.大气辐射校正方法分析[J].地理空间信息,2010,8(1):113-116. Zhu S P,Chen Y.Methods for atmospheric radiation correction[J].Geospatial Information,2010,8(1):113-116.
[3] 亓雪勇,田庆久.光学遥感大气校正研究进展[J].国土资源遥感,2005,17(4):1-6.doi:10.6046/gtzyyg.2005.04.01. Qi X Y,Tian Q J.The advances in the study of atmospheric correction for optical remote sensing[J].Remote Sensing for Land and Resources,2005,17(4):1-6.doi:10.6046/gtzyyg.2005.04.01.
[4] 佃袁勇,方圣辉,徐永荣.一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感,2015,27(2):22-28.doi:10.6046/gtzyyg.2015.02.04. Dian Y Y,Fang S H,Xu Y R.An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content[J].Remote Sensing for Land and Resources,2015,27(2):22-28.doi:10.6046/gtzyyg.2015.02.04.
[5] 郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息,2004(4):66-70. Zheng W,Zeng Z Y.A review on methods of atmospheric correction for remote sensing images[J].Remote Sensing Information,2004(4):66-70.
[6] Gordon H R,Wang M H.Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS:A preliminary algorithm[J].Applied Optics,1994,33(3):443-452.
[7] 夏双,阮仁宗,张月,等.气溶胶光学厚度对蓝藻水华信息提取的影响[J].国土资源遥感,2013,25(1):33-38.doi:10.6046/gtzyyg.2013.01.06. Xia S,Ruan R Z,Zhang Y,et al.Effects of aerosol optical thickness on extracting cyanbacteria bloom[J].Remote Sensing for Land and Resources,2013,25(1):33-38.doi:10.6046/gtzyyg.2013.01.06.
[8] 曹妃甸工业区门户网站[DB/OL].[2013-08-16].http://www.caofeidian.gov.cn/cfdportal/区情概览.aspx. Caofeidian industrial zone portal[DB/OL].[2013-08-16].http://www.caofeidian.gov.cn/cfdportal/anoverviewofthesituation.aspx.
[9] 杜东,刘宏伟,秦雅飞,等.河北省曹妃甸近岸海域悬浮泥沙含量分布特征研究[J].地质调查与研究,2012,35(2):189-194. Du D,Liu H W,Qin Y F,et al.Study on distribution characteristics of the suspended particulate matter(SPM) concentration in the Caofeidian coastal area[J].Geological Survey and Research,2012,35(2):189-194.
[10] 李建国,孙晓明,康慧,等.曹妃甸近海Ⅱ类水体光谱反射率与悬浮泥沙浓度相关性研究[J].国土资源遥感,2009,21(3):54-58.doi:10.6046/gtzyyg.2009.03.11. Li J G,Sun X M,Kang H,et al.The correlation between the average reflectance of caseⅡwater in Caofeidian offing and the concentrations of surface suspended particulate matter[J].Remote Sensing for Land and Resources,2009,21(3):54-58.doi:10.6046/gtzyyg.2009.03.11.
[11] 国家海洋局.GB 17378.4-1998海洋监测规范第四部分:海水分析[S].北京:中国标准出版社,2004. The State Oceanic Administration.GB 17378.4-1998 The Specification for Marine Monitoring-Part Ⅳ:Seawater Analysis[S].Beijing:China Standard Press,2004.
[12] 买买提依明·买买提,塔西甫拉提·特依拜,买买提沙吾提,等.基于6S模型的遥感数据大气校正应用研究[J].水土保持研究,2011,18(3):15-18. Muhammad M,Tiyip T,Mamatsawut,et al.Study on atmospheric correction of remote sensing data application based on 6S model[J].Research of Soil and Water Conservation,2011,18(3):15-18.
[13] 徐萌,郁凡,李亚春,等.6S模式对EOS/MODIS数据进行大气校正的方法[J].南京大学学报:自然科学,2006,42(6):582-589. Xu M,Yu F,Li Y C,et al.The method of atmospheric correction on the EOS/MODIS data with 6S model[J].Journal of Nanjing University:Natural Sciences,2006,42(6):582-589.
[14] 吴北婴,李卫,陈洪滨,等.大气辐射传输实用算法[M].北京:气象出版社,1998. Wu B Y,Li W,Chen H B,et al.Atmospheric Radiative Transfer and Practical Algorithm[M].Beijing:China Meteorological Press,1998.
[15] Adler-Golden S M,Matthew M W,Bernstein L S,et al.Atmospheric correction for shortwave spectral imagery based on MODTRAN 4[C]//Proceedings of SPIE,Imaging Spectrometry V.Denver,CO,USA:SPIE,1999,3753:61-69,doi:10.1117/12.366315.
[16] Research System Inc.FLAASH Module User's Guide,ENVI FLAASH Version 4.1[M].Boulder,CO,USA:Research System Inc.,2004.
[17] 龚建周,陈建飞,刘彦随.E0-1 Hyperion高光谱影像的FLAASH大气校正与评价[J].广州大学学报:自然科学版,2011,10(5):69-75. Gong J Z,Chen J F,Liu Y S.Atmospheric correction and evaluation for E0-1 Hyperion images based on FLAASH model[J].Journal of Guangzhou University:Natural Science Edition,2011,10(5):69-75.
[18] Nazeer M,Nichol J E,Yung Y K.Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment[J].International Journal of Remote Sensing,2014,35(16):6271-6291.
[19] 崔娟.曹妃甸近岸海域悬浮泥沙浓度遥感动态监测与分析[D].西安:长安大学,2011. Cui J.Dynamical Monitor and Analysis of Suspended Sediment Concentration by Remote Sensing in Caofeidian Offshore Areas[D].Xi'an:Chang'an University,2011.

[1] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[2] 布自强, 白林波, 张佳瑜. 基于夜光遥感的宁夏沿黄城市群时空演变[J]. 自然资源遥感, 2022, 34(1): 169-176.
[3] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[4] 王娟娟, 毋兆鹏, 王珊珊, 尹慧慧. 干旱区河谷绿洲土地利用冲突格局分析[J]. 自然资源遥感, 2021, 33(4): 243-251.
[5] 王正, 贾公旭, 张清凌, 黄粤. COVID-19疫情背景下2020年第一季度广东省二、三产业GDP空间分布变化分析[J]. 自然资源遥感, 2021, 33(3): 184-193.
[6] 汪清川, 奚砚涛, 刘欣然, 周文, 徐欣冉. 生态服务价值对土地利用变化的时空响应研究——以徐州市为例[J]. 自然资源遥感, 2021, 33(3): 219-228.
[7] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[8] 肖东升, 练洪. 顾及参数空间平稳性的地理加权人口空间化研究[J]. 自然资源遥感, 2021, 33(3): 164-172.
[9] 邓小进, 井长青, 郭文章, 闫豫疆, 陈宸. 准噶尔盆地不同土地利用类型地表反照率研究[J]. 自然资源遥感, 2021, 33(3): 173-183.
[10] 徐甜雨, 赵学胜, 陈芳馨, 杨艺. 基于多元分区建模指标优化的“一带一路”人口空间化研究[J]. 国土资源遥感, 2021, 33(2): 153-161.
[11] 宋奇, 冯春晖, 高琪, 王明玥, 吴家林, 彭杰. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2): 202-212.
[12] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[13] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[14] 李国庆, 黄菁华, 刘冠, 李洁, 翟博超, 杜盛. 基于Landsat8卫星影像土地利用景观破碎化研究——以陕西省延安麻塔流域为例[J]. 国土资源遥感, 2020, 32(3): 121-128.
[15] 高文龙, 苏腾飞, 张圣微, 杜银龙, 雒萌. 矿区地物分类及土地利用/覆盖变化动态监测——以海流兔流域为例[J]. 国土资源遥感, 2020, 32(3): 232-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发