Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (4): 18-23    DOI: 10.6046/gtzyyg.2016.04.03
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于波谱模拟的红外成像仪信噪比指标设置研究
魏丹丹1, 甘甫平1,2, 张振华1,2, 肖晨超1, 唐绍凡3, 赵慧洁4
1. 中国国土资源航空物探遥感中心, 北京 100083;
2. 国土资源部航空地球物理与遥感地质重点实验室, 北京 100083;
3. 北京空间机电研究所, 北京 100076;
4. 北京航空航天大学仪器科学与光电工程学院, 北京 100191
A study of SNR index setting of infrared imager based on spectrum simulation
WEI Dandan1, GAN Fuping1,2, ZHANG Zhenhua1,2, XIAO Chenchao1, TANG Shaofan3, ZHAO Huijie4
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Land and Resources, Beijing 100083, China;
3. Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China;
4. School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
全文: PDF(3469 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

信噪比(signal to noise ratio,SNR)是评价传感器性能的重要参数,是衡量传感器所获取的数字信号真实性的重要指标。SNR的高低对遥感数据能否得到有效利用具有至关重要的作用。任何传感器的指标设置都要以满足用户需求为出发点,因此有必要开展基于波谱模拟的红外成像仪SNR指标设置研究。首先运用已有地物波谱库数据,从数据模拟的角度出发,通过辐射传输模型,模拟得到入瞳辐亮度数据;然后生成并添加高斯白噪声,按照设计方给出的波谱响应函数进行波谱重采样,得到与设计传感器相同的波段;最后采用波谱特征拟合的方法,判别不同SNR条件下地物的可识别度。针对不同领域用户对地物识别的精度需求,给出相应的SNR建议,为传感器的设计提供科学合理的依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢新玉
魏鸣
王秀琴
向芬
关键词 热带降雨测量计划卫星(TRMM)-3 B43数据降水适用性新疆地区    
Abstract

Signal to noise ratio(SNR) is regarded as an essential parameter of sensors and remote sensing images. It is an important indicator of the acquired digital signal's trueness. The level of SNRs plays a critical role in remote sensing data's applications. The parameter setting should focus on satisfying the users' requirement, so it is necessary to carry out the study of SNR index setting of infrared imager based on spectrum simulation. In this paper, the radioactive transfer model and spectral library were used to simulate apparent radiance and different levels of additive white Gaussian noise was added to the simulated spectrum. The simulated spectrum was re-sampled according to the spectral response function calculated from the designed sensor. In the section of noise impact on object recognition, spectral feature fitting was chosen to compare the fit of simulated spectra with different noise levels to reference apparent radiance spectra without noise. For various accuracies of objects recognition demand in different domains, the authors can propose different suggestions to users, and this research provides reasonable and scientific foundation for sensor design work.

Key wordstropical rainfall measuring mission(TRMM)-3 B43 data    precipitation    applicability    Xinjiang region
收稿日期: 2015-08-27      出版日期: 2016-10-20
:  TP79  
基金资助:

国防科工局预研究项目“新一代高分辨率红外成像仪技术”资助。

通讯作者: 甘甫平(1971-),男,博士,研究员,主要从事遥感地质应用等方面研究。Email:fpgan@aliyun.com。
作者简介: 魏丹丹(1985-),女,博士,工程师,主要从事遥感数据仿真与应用评价、高光谱遥感应用等研究。Email:vddoris@foxmail.com。
引用本文:   
魏丹丹, 甘甫平, 张振华, 肖晨超, 唐绍凡, 赵慧洁. 基于波谱模拟的红外成像仪信噪比指标设置研究[J]. 国土资源遥感, 2016, 28(4): 18-23.
WEI Dandan, GAN Fuping, ZHANG Zhenhua, XIAO Chenchao, TANG Shaofan, ZHAO Huijie. A study of SNR index setting of infrared imager based on spectrum simulation. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 18-23.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.04.03      或      https://www.gtzyyg.com/CN/Y2016/V28/I4/18

[1] 闫柏琨.热红外遥感岩矿波谱机理及信息提取技术方法研究[D].北京:中国地质大学(北京),2006. Yan B K.Study on Mechanism of Spectrums of Rocks and Minerals and Information Extraction Method in Thermal Remote Sensing Geology[D].Beijing:China University of Geosciences(Beijing),2006.
[2] Hook S J,Myers J J,Thome K J,et al.The MODIS/ASTER airborne simulator(MASTER):A new instrument for earth science studies[J].Remote Sensing of Environment,2001,76(1):93-102.
[3] Coll C,Caselles V,Valor E,et al.Validation of temperature-emissivity separation and split-window methods from TIMS data and ground measurements[J].Remote Sensing of Environment,2003,85(2):232-242.
[4] Sabine C,Realmuto V J,Taranik J V.Quantitative estimation of granitoid composition from thermal infrared multispectral scanner(TIMS) data,Desolation Wilderness, northern Sierra Nevada,California[J].Journal of Geophysical Research,1994,99(B3):4261-4271.
[5] Hook S J,Gabell A R,Green A A,et al.A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies[J].Remote Sensing of Environment,1992,42(2):123-135.
[6] Maccherone B.Moderate resolution imaging spectroradiometer[EB/OL].[2015-07-08].http://modis.gsfc.nasa.gov/.
[7] Abrams M.The advanced spaceborne thermal emission and reflection radiometer(ASTER):Data products for the high spatial resolution imager on NASA's Terra platform[J].International Journal of Remote Sensing,2000,21(5):847-859.
[8] Kahle A B,Alley R E.Separation of temperature and emittance in remotely sensed radiance measurements[J].Remote Sensing of Environment,1992,42(1):1-21.
[9] Börner A,Wiest L,Keller P,et al.Sensor:A tool for the simulation of hyperspectral remote sensing systems[J].ISPRS Journal of Photogrammetry and Remote Sensing,2001,55(5/6):299-312.
[10] Corner B R,Narayanan R M,Reichenbach S E.Noise estimation in remote sensing imagery using data masking[J].International Journal of Remote Sensing,2003,24(4):689-702.
[11] 田丰.全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D].北京:中国地质大学(北京),2010. Tian F.Identification and Quantitative Retrival of Minerals Information Integrating VIS-NIR-MIR-TIR(0.35~25μm) Hyspectral Data[D].Beijing:China University of Geosciences(Beijing),2010.
[12] Salisbury J W,Wald A,D'Aria D M.Thermal-infrared remote sensing and Kirchhoff's law:1.Laboratory measurements[J].Journal of Geophysical Research,1994,99(B6):11897-11911.
[13] Berk A,Anderson G P,Acharya P K,et al.MODTRAN4 User's Manual[R].Washington,DC,MA,USA:Air Force Research Laboratory,Space Vehicles Directorate,Air Force Material Command,Hanscom AFB,1999.
[14] Kreiss W T,Tchoubineh A,Lanich W A.Model for infrared sensor performance evaluation:Applications and results[J].Optical Engineering,1991,30(11):1797-1803.
[15] Citroen M,Raz G,Berger M.Noise equivalent reflectance difference(NERD) vs.spatial resolution(SR) as a good measure for system performances[C]//Proceedings of SPIE Remote Sensing System Engineering.San Diego,California,USA:SPIE,2008.
[16] Schott J R.Remote Sensing:The Image Chain Approach[M].2nd ed.New York:Oxford University Press,2007.
[17] Clark R N,Swayze G A,Livo K E,et al.Imaging spectroscopy:Earth and planetary remote sensing with the USGS Tetracorder and expert systems[J].Journal of Geophysical Research,2003,108(E12):5131.

[1] 于维, 柯福阳, 曹云昌. 基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析[J]. 自然资源遥感, 2021, 33(3): 202-210.
[2] 李媛媛, 宁少尉, 丁伟, 金菊良, 张政. 最新GPM降水数据在黄河流域的精度评估[J]. 国土资源遥感, 2019, 31(1): 164-170.
[3] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188.
[4] 章钊颖, 鲁奕岑, 吴国周, 王永利. 基于多时相Sentinel-1A SAR数据草原地区降水量反演[J]. 国土资源遥感, 2017, 29(4): 156-160.
[5] 程红霞, 梁凤超, 李帅, 林粤江. 天山山区大气可降水量的空间聚集特征分析[J]. 国土资源遥感, 2017, 29(1): 116-121.
[6] 曹颖, 郭兆成, 王强强, 焦润成. 基于遥感技术的降水入渗补给条件空间分异性研究[J]. 国土资源遥感, 2016, 28(3): 91-95.
[7] 卢新玉, 魏鸣, 王秀琴, 向芬. TRMM-3 B43降水产品在新疆地区的适用性研究[J]. 国土资源遥感, 2016, 28(3): 166-173.
[8] 孙慧, 谢小平. 基于MODIS数据的日照市近海浒苔监测及影响因子分析[J]. 国土资源遥感, 2016, 28(1): 144-151.
[9] 梁守真, 禹定峰, 王猛, 施平. 应用遥感时序数据研究植被变化与气候因子的关系——以环渤海地区为例[J]. 国土资源遥感, 2015, 27(3): 114-121.
[10] 李爽, 宋小宁, 王亚维, 王睿馨. 基于AMSR-E数据的中国地区微波湿度指数研究[J]. 国土资源遥感, 2015, 27(1): 68-74.
[11] 刘三超, 柳钦火, 高懋芳. 地基多波段遥感大气可降水量研究[J]. 国土资源遥感, 2006, 18(4): 6-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发