Please wait a minute...
国土资源遥感  2017, Vol. 29 Issue (1): 21-28    DOI: 10.6046/gtzyyg.2017.01.04
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于小波纹理和基元合并的高分影像居民地提取
胡华龙1, 薛武1,2,3, 秦志远1
1. 信息工程大学地理空间信息学院, 郑州 450001;
2. 地理信息工程国家重点实验室, 西安 710054;
3. 河南理工大学矿山空间信息技术国家测绘地理信息局重点实验室, 焦作 454003
Extraction of residential area from high resolution images based on wavelet texture and primitive merging
HU Hualong1, XUE Wu1,2,3, QIN Zhiyuan1
1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
2. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China;
3. Key Laboratory of Mine Spatial Information Technologies of NASG, Henan Polytechnic University, Jiaozuo 454003, China
全文: PDF(4270 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

由于高分辨率全色影像(简称“高分影像”)中的信息高度细节化,再加上噪声的影响,会导致传统基于纹理特征的居民地提取方法效果不理想。为此,提出一种基于小波纹理和基元合并的居民地提取方法。首先,利用结合小波变换(wavelet transform,WT)的分形网络进化算法(fractal net evolution approach,FNEA)获取初始基元,并对基元的多尺度小波纹理进行分析;然后,在人工给定种子基元的基础上合并具有相似纹理的基元;最后,对基元合并的结果进行数学形态学修整,得到居民地区域。利用天绘一号(TH-1)全色影像对所提方法进行验证及对比分析的结果表明,该方法对高分影像中的街区式居民地可取得较高的提取精度和计算效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张连翀
李国庆
于文洋
冉全
关键词 洪涝淹没范围时空模拟水平集遥感黑龙江洪水    
Abstract

Due to the highly detailed information and noise in the high resolution panchromatic images, the results of traditional residential area extraction algorithms based on texture features are not satisfactory. To tackle this problem, the authors propose a method based on wavelet texture and primitive merging in this paper. For obtaining the initial primitives, the image was firstly segmented by fractal net evolution approach modified by the wavelet transform, and then the multi-scale wavelet texture features extraction method was directly applied to the irregular image primitives. Based on the artificially provided seed primitives, the algorithm merged the primitives with similar texture features and then applied morphological methods to the result of primitive merging. In the experiment, Mapping Satellite-1(TH-1) panchromatic images were used to validate the proposed method. The comparative analysis with other texture features-based methods shows that the proposed method could extract the street-block residential area from high resolution panchromatic images with a higher extraction accuracy and computational efficiency.

Key wordsflood inundation area    spatial-temporal simulation    level set    remote sensing    Heilong River flood
收稿日期: 2015-08-26      出版日期: 2017-01-23
ZTFLH:  TP751.1  
基金资助:

地理信息工程国家重点实验室开放研究基金资助项目“无人机视频地理信息定标与视频快速三维重建技术”(编号:SKLGIE2014-M-3-1)和河南理工大学矿山空间信息技术国家测绘地理信息局重点实验室开放研究基金资助项目“无人机视频地理国情应急监测系统集成关键技术研究”(编号:KLM201404)共同资助

作者简介: 胡华龙(1989-),男,硕士研究生,主要研究方向为高分辨率遥感影像地物要素智能化提取。Email:huhualongloong@163.com。
引用本文:   
胡华龙, 薛武, 秦志远. 基于小波纹理和基元合并的高分影像居民地提取[J]. 国土资源遥感, 2017, 29(1): 21-28.
HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.01.04      或      http://www.gtzyyg.com/CN/Y2017/V29/I1/21

[1] 于博,王力,牛铮.基于中性集对北川羌族自治县新城人工建设用地的识别[J].国土资源遥感,2015,27(1):106-112.doi:10.6046/gtzyyg.2015.01.17. Yu B,Wang L,Niu Z.Analysis of built-up land detection in new Beichuan County based on neutrosophic set[J].Remote Sensing for Land and Resources,2015,27(1):106-112.doi:10.6046/gtzyyg.2015.01.17.
[2] 易凤佳,李仁东,常变蓉,等.长株潭地区建设用地扩张遥感时空特征分析[J].国土资源遥感,2015,27(2):160-166.doi:10.6046/gtzyyg.2015.02.25. Yi F J,Li R D,Chang B R,et al.Spatial-temporal features of construction land expansion in Changzhutan(Changsha-Zhuzhou-Xiangtan) area based on remote sensing[J].Remote Sensing for Land and Resources,2015,27(2):160-166.doi:10.6046/gtzyyg.2015.02.25.
[3] 杨存建,周成虎.TM影像的居民地信息提取方法研究[J].遥感学报,2000,4(2):146-150. Yang C J,Zhou C H.Extracting residential areas on the TM imagery[J].Journal of Remote Sensing,2000,4(2):146-150.
[4] Zha Y,Gao J,Ni S.Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J].International Journal of Remote Sensing,2003,24(3):583-594.
[5] Xu H.A new index for delineating built-up land features in satellite imagery[J].International Journal of Remote Sensing,2008,29(14):4269-4276.
[6] Pesaresi M,Gerhardinger A,Kayitakire F.A robust built-up area presence index by anisotropic rotation-invariant textural measure[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2008,1(3):180-192.
[7] Zhong P,Wang R S.A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):3978-3988.
[8] 金飞,张占睦,芮杰,等.基于树型小波变换和尺度共生矩阵的居民地提取[J].海洋测绘,2009,29(6):48-51. Jin F,Zhang Z M,Rui J,et al.Residential area extraction based on tree-structure wavelet and scale-based concurrent matrix[J].Hydrographic Surveying and Charting,2009,29(6):48-51.
[9] Hu X Y,Shen J J,Shan J,et al.Local edge distributions for detection of salient structure textures and objects[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):466-470.
[10] Unsalan C,Boyer K L.Classifying land development in high-resolution panchromatic satellite images using straight-line statistics[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):907-919.
[11] 陶超,邹峥嵘,丁晓利.利用角点进行高分辨率遥感影像居民地检测方法[J].测绘学报,2014,43(2):164-169,192. Tao C,Zou Z R,Ding X L.Residential area detection from high-resolution remote sensing imagery using corner distribution[J].Acta Geodaetica et Cartographica Sinica,2014,43(2):164-169,192.
[12] Baatz M,Schäpe A.Multiresolution segmentation:An optimization approach for high quality multi-scale image segmentation[C]//Strobl J,Blaschke T,Griesebner G.Angewandte geographische infor-mationsverarbeitung XII:beiträge zum AGIT-symposium.Salzburg:Herbert Wichmann Verlag,2000:12-23.
[13] 曹建农,王平禄,董昱威.高分辨率遥感影像上居民地自动提取方法[J].武汉大学学报:信息科学版,2014,39(7):831-837. Cao J N,Wang P L,Dong Y W.Automatic extraction technique of residential areas in high resolution remote sensing image[J].Geomatics and Information Science of Wuhan University,2014,39(7):831-837.
[14] 黄昕.高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D].武汉:武汉大学,2009:60-65. Huang X.Multiscale Texture and Shape Feature Extraction and Object-Oriented Classification for Very High Resolution Remotely Sensed Imagery[D].Wuhan:Wuhan University,2009:60-65.
[15] Achanta R,Shaji A,Smith K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282.
[16] 刘彬,王朝英,侯志强.融合聚类和分级区域合并的彩色图像分割方法[J].计算机工程与应用,2011,47(30):202-205. Liu B,Wang Z Y,Hou Z Q.Color image segmentation algorithm using clustering and hierarchical region merge[J].Computer Engineering and Applications,2011,47(30):202-205.
[17] Tong H J,Maxwell T,Zhang Y,et al.A supervised and fuzzy-based approach to determine optimal multi-resolution image segmentation parameters[J].Photogrammetric Engineering & Remote Sensing,2012,78(10):1029-1044.
[18] Haris K,Efstratiadis S N,Maglaveras N,et al.Hybrid image segmentation using watersheds and fast region merging[J].IEEE Transactions on Image Processing,1998,7(12):1684-1699.
[19] 李向辉,陈一祥,王海斌,等.基于Gabor滤波和局部特征点密度的居民区提取[J].国土资源遥感,2015,27(3):59-64.doi:10.6046/gtzyyg.2015.03.11. Li X H,Chen Y X,Wang H B,et al.Urban area detection based on Gabor filtering and density of local feature points[J].Remote Sensing for Land and Resources,2015,27(3):59-64.doi:10.6046/gtzyyg.2015.03.11.

[1] 冯力力,江利明,柳林,孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
[2] 殷亚秋,杨金中,汪洁,安娜,姜赟. 长江经济带废弃矿山占损土地遥感调查与生态修复对策[J]. 国土资源遥感, 2020, 32(2): 170-176.
[3] 张春森,吴蓉蓉,李国君,崔卫红,冯晨轶. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19-25.
[4] 石海岗,梁春利,张建永,张春雷,程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[5] 金楷仑,郝璐. 基于遥感数据与SEBAL模型的江浙沪地区地表蒸散反演[J]. 国土资源遥感, 2020, 32(2): 204-212.
[6] 王碧晴,韩文泉,许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[7] 古海玲,陈超,芦莹,褚衍丽. 基于卫星遥感技术的区域经济发展模型构建[J]. 国土资源遥感, 2020, 32(2): 226-232.
[8] 刘晰,郝利娜,杨显华,黄洁,张志,杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[9] 孙玉梅,王保云,张祝鸿,韩文科,孙显辰,张玲莉. 基于结构相似区域搜索的TM影像细小河流提取方法[J]. 国土资源遥感, 2020, 32(2): 63-72.
[10] 康晋洁,戚浩平,杨清华,陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[11] 陈洁,高子弘,王珊珊,金鼎坚. 三峡库区航空遥感地质调查技术发展综述[J]. 国土资源遥感, 2020, 32(2): 1-10.
[12] 童立强,裴丽鑫,涂杰楠,郭兆成,余江宽,范景辉,李丹丹. 冰崩灾害的界定与类型划分——以青藏高原地区为例[J]. 国土资源遥感, 2020, 32(2): 11-18.
[13] 王川,范景辉,林思美,饶月明,黄华国. 光学遥感植被指数与SAR遥感参数的相关性及其主要影响因素研究[J]. 国土资源遥感, 2020, 32(2): 130-137.
[14] 付丽华,张策. 基于高分遥感数据的西藏荣勒地区控矿信息提取[J]. 国土资源遥感, 2020, 32(1): 98-105.
[15] 王海庆,郝建亭,李丽,安娜,许文佳,殷亚秋. 西藏各行政区矿产开采强度遥感分析[J]. 国土资源遥感, 2020, 32(1): 115-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发