Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (2): 29-36    DOI: 10.6046/gtzyyg.2017.02.05
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
落叶阔叶林冠层非光合组分对冠层FPAR的影响分析——一种分层模拟的方法
梁守真1, 2, 3, 隋学艳1, 姚慧敏1, 王猛1, 侯学会1, 陈劲松3, 马万栋4
1.山东省农业可持续发展研究所,济南 250100;
2.农业部华东都市农业重点实验室,济南 250100;
3.深圳先进技术研究院,深圳 518055;
4.环境保护部卫星环境应用中心,北京 100094
An analysis of influence of non-photosynthetic vegetation of deciduous broad-leaved forest on canopy FPAR: A method based on layered simulation
LIANG Shouzhen1, 2, 3, SUI Xueyan1, YAO Huimin1, WANG Meng1, HOU Xuehui1, CHEN Jinsong3, MA Wandong4
1. Shandong Institute of Agricultural Sustainable Development, Ji’nan 250100, China;
2. Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Ji’nan 250100, China;
3. Shenzhen Institutes of Advanced Technology, Shenzhen 518055,China;
4. Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China
全文: PDF(751 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 估算并消除冠层非光合组分(non-photosynthetic vegetation,NPV)吸收的光合有效辐射,对准确估算生态系统总初级生产力(gross primary productivity,GPP)具有重要意义。以落叶阔叶林为例,通过设置不同情景,应用任意倾斜叶片散射(scattering by arbitrary inclined leaves,SAIL)模型进行冠层光合有效辐射吸收分量(fraction of absorbed photosynthetically active radiation,FPAR)的分层模拟,分析冠层NPV的FPAR的变动及其对冠层FPAR的贡献,并初步探讨落叶阔叶林NPV的FPAR的估算方法。结果表明,冠层NPV的FPAR的大小与冠层结构相关,在高覆盖度植被区NPV对冠层FPAR的贡献通常较小,但在低植被覆盖区的贡献会较高; NPV降低了冠层在近红外波段的反射; 增强型植被指数(enhanced vegetation index,EVI)与NPV的FPAR存在显著的线性负相关关系,可用来描述NPV的变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟丹
宫辉力
李小娟
杨思遥
关键词 城市热岛城市雨岛热带降雨观测计划(TRMM)中分辨率成像光谱仪(MODIS)地表温度(LST)    
Abstract:Fraction of absorbed photosynthetically active radiation(FPAR) of the canopy is an important biophysical variable widely used in satellite-based production efficiency models to estimate the gross primary productivity(GPP). Vegetation canopy is composed primarily of photosynthetically active vegetation(PAV)and non-photosynthetic vegetation(NPV). Only the PAR absorbed by PAV is used for photosynthesis. Therefore, the photosynthetically active radiation absorbed by NPV in the canopy should be estimated and removed from canopy PAR so as to estimate GPP more accurately. Scattering by arbitrary inclined leaves(SAIL)model assumes canopy as a turbid medium with a number of layers, each treated as an infinite, horizontal, homogeneous medium. This assumption and configuration of model makes it possible to calculate PAR absorbed of each layers. In this study, SAIL model was used to calculate spectral reflectance and the PAR absorbed by PAV and NPV of deciduous broadleaved forest, and at last FPAR of NPV (FPARNPV) was calculated and analyzed. The results show that FPARNPV is dominated by canopy architecture. The contribution of NPV to canopy FPAR is low in high-cover regions, and the result is opposite in low-cover regions. NPV in the canopy can reduce reflectance in near infrared band. A significant and negative correlation is found between enhanced vegetation index(EVI)and FPARNPV. Though the simulation condition is ideal, the study is a good attempt which provides a means for acquiring deciduous broadleaf forests FPARNPV.
Key wordsurban heat island(UHI)    urban rain island(URI)    tropical rainfall measuring mission(TRMM)    moderate resolution imaging spectroradiometer(MODIS)    land surface temperature(LST)
收稿日期: 2015-12-01      出版日期: 2017-05-03
基金资助:国家自然科学基金项目“森林冠层绿色FPAR的高光谱遥感反演研究”(编号: 41401407)资助
作者简介: 梁守真(1979-),男,博士,主要从事植被遥感方面的研究。Email: szliang_cas@163.com。
引用本文:   
梁守真, 隋学艳, 姚慧敏, 王猛, 侯学会, 陈劲松, 马万栋. 落叶阔叶林冠层非光合组分对冠层FPAR的影响分析——一种分层模拟的方法[J]. 国土资源遥感, 2017, 29(2): 29-36.
LIANG Shouzhen, SUI Xueyan, YAO Huimin, WANG Meng, HOU Xuehui, CHEN Jinsong, MA Wandong. An analysis of influence of non-photosynthetic vegetation of deciduous broad-leaved forest on canopy FPAR: A method based on layered simulation. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 29-36.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.05      或      https://www.gtzyyg.com/CN/Y2017/V29/I2/29
[1] Cramer W,Kicklighter D W,Bondeau A,et al.Comparing global models of terrestrial net primary productivity(NPP):Overview and key results[J].Global Change Biology,1999,5(S1):1-15.
[2] Fensholt R,Sandholt I,Rasmussen M S.Evaluation of MODIS LAI,fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements[J].Remote Sensing of Environment,2004,91(3/4):490-507.
[3] Olofsson P,Eklundh L.Estimation of absorbed PAR across Scandinavia from satellite measurements.Part II:Modeling and evaluating the fractional absorption[J].Remote Sensing of Environment,2007,110(2):240-251.
[4] 吴炳方,曾 源,黄进良.遥感提取植物生理参数LAI/FPAR的研究进展与应用[J].地球科学进展,2004,19(4):585-590.
Wu B F,Zeng Y,Huang J L.Overview of LAI/PAR retrieval from remotely sensed data[J].Advance in Earth Sciences,2004,19(4):585-590.
[5] Schottker B,Phinn S,Schmidt M.How does the global Moderate Resolution Imaging Spectroradiometer(MODIS) Fraction of Photosynthetically Active Radiation(FPAR) product relate to regionally developed land cover and vegetation products in a semi-arid Australian savanna[J].Journal of Applied Remote Sensing,2010,4(1):043538.
[6] Xiao X M,Hollinger D,Aber J,et al.Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J].Remote Sensing of Environment,2004,89(4):519-534.
[7] Zhang Q Y,Xiao X M,Braswell B,et al.Estimating light absorption by chlorophyll,leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model[J].Remote Sensing of Environment,2005,99(3):357-371.
[8] 王文杰,祖元刚,王慧梅.林木非同化器官树枝(干)光合功能研究进展[J].生态学报,2007,27(4):1583-1595.
Wang W J,Zu Y G,Wang H M.Review on the photosynthetic function of non-photosynthetic woody organs of stem and branches[J].Acta Ecologica Sinica,2007,27(4):1583-1595.
[9] Le Roux X,Gauthier H,Bégué A,et al.Radiation absorption and use by humid savanna grassland:Assessment using remote sensing and modelling[J].Agricultural and Forest Meteorology,1997,85(1/2):117-132.
[10] Asner G P,Wessman C A,Archer S.Scale dependence of absorption of photosynthetically active radiation in terrestrial ecosystems[J].Ecological Applications,1998,8(4):1003-1021.
[11] 高彦华,陈良富,柳钦火,等.叶绿素吸收的光合有效辐射比率的遥感估算模型研究[J].遥感学报,2006,10(5):798-803.
Gao Y H,Chen L F,Liu Q H,et al.Research on remote sensing model for FPAR absorbed by chlorophyll[J].Journal of Remote Sensing,2006,10(5):798-803.
[12] 李 刚.呼伦贝尔温带草地FPAR/LAI遥感估算方法研究[D].北京:中国农业科学院,2009.
LI G.Study on Remote Sensing Estimation Models for FPAR/LAI of Temperate Grassland in Hulunber[D].Beijing:Chinese Academy of Agricultural Sciences,2009.
[13] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
Zhao Y S.Principles and Methods of Remote Sensing Application[M].Beijing:Science Press,2003.
[14] Verhoef W.Light scattering by leaf layers with application to canopy reflectance modeling:The SAIL model[J].Remote Sensing of Environment,1984,16(2):125-141.
[15] Jacquemoud S,Verhoef W,Baret F,et al.PROSPECT+ SAIL models:A review of use for vegetation characterization[J].Remote Sensing of Environment,2009,113(s1):56-66.
[16] Huemmrich K F,Goward S N.Vegetation canopy PAR absorptance and NDVI:An assessment for ten tree species with the SAIL model[J].Remote Sensing of Environment,1997,61(2):254-269.
[17] Gobron N,Pinty B,Aussedat O,et al.Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes:Methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations[J].Journal of Geophysical Research,2006,111(D13):13110.
[18] Widlowski J L,Pinty B,Lavergne T,et al.Using 1-D models to interpret the reflectance anisotropy of 3-D canopy targets:Issues and caveats[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(9):2008-2017.
[19] Bacour C,Baret F,Béal D,et al.Neural network estimation of LAI, f APAR , f Cover and LAI×Cab ,from top of canopy MERIS reflectance data:Principles and validation[J].Remote Sensing of Environment,2006,105(4):313-325.
[20] Weiss M,Baret F,Garrigues S,et al.LAI,fAPAR and fCover CYCLOPES global products derived from VEGETATION.Part 2:Validation and comparison with MODIS Collection 4 products[J].Remote Sensing of Environment,2007,110(3):317-331.
[21] 肖艳芳,周德民,赵文吉.辐射传输模型多尺度反演植被理化参数研究进展[J].生态学报,2013,33(11):3291-3297.
Xiao Y F,Zhou D M,Zhao W J.Review of inversing biophysical and biochemical vegetation parameters in various spatial scales using radiative transfer models[J].Acta Ecologica Sinica,2013,33(11):3291-3297.
[22] Laurent V C E,Verhoef W,Clevers J G P W,et al.Inversion of a coupled canopy-atmosphere model using multi-angular top-of-atmosphere radiance data:A forest case study[J].Remote Sensing of Environment,2011,115(10):2603-2612.
[23] Li W J,Fang H L.Estimation of direct,diffuse,and total FPARs from Landsat surface reflectance data and ground-based estimates over six FLUXNET sites[J].Journal of Geophysical Research,2015,120(1):96-112.
[24] Steinberg D C,Goetz S J,Hyer E J.Validation of MODIS FPAR products in boreal forests of Alaska[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1818-1828.
[25] Friedl M A,Davis F W,Michaelsen J,et al.Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables:An analysis using a scene simulation model and data from FIFE[J].Remote Sensing of Environment,1995,54(3):233-246.
[26] Myneni R B,Williams D L.On the relationship between FAPAR and NDVI[J].Remote Sensing of Environment,1994,49(3):200-211.
[27] 陈雪洋,蒙继华,吴炳方,等.基于HJ-1CCD的夏玉米FPAR遥感监测模型[J].农业工程学报,2010,26(s1):241-245.
Chen X Y,Meng J H,Wu B F,et al.Monitoring corn FPAR based on HJ-1 CCD[J].Transactions of the CSAE,2010,26(s1):241-245.
[28] King D A,Turner D P,Ritts W D.Parameterization of a diagnostic carbon cycle model for continental scale application[J].Remote Sensing of Environment,2011,115(7):1653-1664.
[29] Nakaji T,Ide R,Oguma H,et al.Utility of spectral vegetation index for estimation of gross CO 2 flux under varied sky conditions[J].Remote Sensing of Environment,2007,109(3):274-284.
[30] Xiao X M.Light absorption by leaf chlorophyll and maximum light use efficiency[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1933-1935.
[31] Roujean J L,Breon F M.Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J].Remote Sensing of Environment,1995,51(3):375-384.
[32] Gitelson A A,Kaufman Y J,Merzlyak M N.Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J].Remote Sensing of Environment,1996,58(3):289-298.
[33] Huete A R,Liu H Q,Batchily K,et al.A comparison of vegetation indices over a global set of TM images for EOS-MODIS[J].Remote Sensing of Environment,1997,59(3):440-451.
[34] Running S W,Thornton P E,Nemani R,et al.Global terrestrial gross and net primary productivity from the earth observing system[M]//Sala O E,Jackson R B,Mooney H A,et al.Methods in Ecosystem Science.New York:Springer-Verlag,2000:44-57.
[35] 黄 玫,季劲钧.中国区域植被叶面积指数时空分布——机理模型模拟与遥感反演比较[J].生态学报,2010,30(11):3057-3064.
Huang M,Ji J J.The spatial-temporal distribution of leaf area index in China:A comparison between ecosystem modeling and remote sensing reversion[J].Acta Ecologica Sinica,2010,30(11):3057-3064.
[1] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[2] 杨敏, 杨贵军, 王艳杰, 张勇峰, 张智宏, 孙晨红. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 2018, 30(3): 213-223.
[3] 江振蓝, 龚振彬, 潘辉, 张宝玉, 王婷芬. 空间自相关局部指标在城市热岛界定中的应用[J]. 国土资源遥感, 2018, 30(3): 136-142.
[4] 潘竟虎, 董磊磊, 王娜云, 杨紫金. 兰西城市群热环境格局多尺度研究[J]. 国土资源遥感, 2018, 30(2): 138-146.
[5] 杨敏, 杨贵军, 陈晓宁, 张勇峰, 尤静妮. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018, 30(1): 54-62.
[6] 孙明, 谢敏, 丁美花, 许文龙, 黄思琦, 高菲. 2001—2015年间广西壮族自治区防城港市热岛效应时空变化研究[J]. 国土资源遥感, 2018, 30(1): 135-143.
[7] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
[8] 贺丽琴, 杨鹏, 景欣, 晏磊, 苏琳琳. 基于MODIS影像及不透水面积的珠江三角洲热岛效应时空分析[J]. 国土资源遥感, 2017, 29(4): 140-146.
[9] 赵菲菲, 包妮沙, 吴立新, 孙瑞. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.
[10] 孟丹, 宫辉力, 李小娟, 杨思遥. 北京7·21暴雨时空分布特征及热岛-雨岛响应关系[J]. 国土资源遥感, 2017, 29(1): 178-185.
[11] 荆凤, 申旭辉, 康春丽, 熊攀. 基于地震监测应用的地表温度和长波辐射数据对比分析[J]. 国土资源遥感, 2015, 27(1): 81-86.
[12] 王艳慧, 肖瑶. 北京市1989-2010年地表温度时空分异特征分析[J]. 国土资源遥感, 2014, 26(3): 146-152.
[13] 李昕瑜, 杜培军, 阿里木·赛买提. 南京市地表参数变化与热岛效应时空分析[J]. 国土资源遥感, 2014, 26(2): 177-183.
[14] 杨可明, 周玉洁, 齐建伟, 王林伟, 刘士文. 城市不透水面及地表温度的遥感估算[J]. 国土资源遥感, 2014, 26(2): 134-139.
[15] 杜培军, 陈宇, 谭琨. 江苏滨海湿地土地利用/覆盖变化与地表温度响应遥感监测[J]. 国土资源遥感, 2014, 26(2): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发