Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (2): 138-143    DOI: 10.6046/gtzyyg.2017.02.20
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
SRTM(1″)DEM在流域水文分析中的适用性研究
于海洋1, 2, 罗玲1, 马慧慧1, 李辉2
1.河南理工大学矿山空间信息技术国家测绘地理信息局重点实验室,焦作 454000;
2.黄河勘测规划设计有限公司,郑州 450045
Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM
YU Haiyang1, 2, LUO Ling1, MA Huihui1, LI Hui2
1. Key Laboratory of Mine Spatial Information Technologies of NASG, Henan Polytechnic University, Jiaozuo 454000, China;
2. Yellow River Engineering Consulting Co., Ltd. Zhengzhou 450045, China
全文: PDF(787 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高精度的数字高程模型(digital elevation model,DEM)数据是流域水文分析应用的基础。美国地质调查局新发布了全球高分辨率数字高程数据产品,其空间分辨率为1″(约为30 m)。为评价该数据在流域水文分析中的适用性,以鹤壁汤河流域为实验区,以机载LiDAR DEM数据为参考,统计了SRTM(1″)数据的高程误差,分析了坡度、坡向、地表覆盖等对误差的影响; 在基于地形的水文分析中,统计分析了SRTM(1″)数据误差对地形湿度指数、坡度坡长因子以及汇流动力指数等地形指数计算的影响; 最后选取流域汇水区面积、最长水流路径长度、形状系数、弯曲度系数等流域特征参数对两种DEM数据提取结果进行了对比。研究表明SRTM(1″) DEM数据具有较高的精度,原始数据均方根误差为5.98 m,在消除平面位移误差后减小为4.32 m。基于地形的水文分析表明SRTM DEM与LiDAR DEM计算结果具有一定的差异,地形湿度指数平均值略高,坡度坡长因子和汇流动力指数平均值偏低,离散度偏小,这与SRTM DEM在微地貌以及高坡度地形区存在失真相关。两种DEM数据提取流域特征参数差异较小。上述研究表明SRTM DEM(1″)数据在流域水文分析中具有较大的应用潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张幼莹
余江宽
张丹丹
林华暖
关键词 国产卫星资源一号(ZY-1)02C高分一号(GF-1)遥感影像本底数据更新    
Abstract

High-precision DEM data constitute the basis of watershed hydrology analysis. SRTM 1 Arc-Second Global elevation data, released by US Geological Survey, offer worldwide coverage data at a resolution of 1″ (30 m). In order to evaluate and analyze the potential watershed hydrologic applications of SRTM, the authors used Tanghe watershed in Hebi as the experimental area and airborne LiDAR DEM data as a reference to assess vertical accuracy of SRTM (1″) data and the impact of slope, aspect, land cover on errors of SRTM (1″). Hydrologic indexes based on the terrain, such as Topographic Wetness Index (TWI), Length Slope Factor (LSF) and Stream Power Index (SPI),were computed for analysis. Finally the basin’s characteristic parameters, such as catchment basin area, longest path length, shape factor, curvature coefficient, were extracted from the two DEM data and the results were compared. Studies show that SRTM (1″) DEM data have high precision, the RMSE of the original data is 5.98 m, and the RMSE of the data with the elimination of the plane displacement is reduced to 4.32 m. Hydrological analysis shows that SRTM DEM and LiDAR DEM produce some different results: the average of TWI of SRTM is slightly higher, the average of SLF and SPI is lower and the dispersion degree is smaller. This is associated with the terrain distortion of SRTM DEM in micro-topography and high slope area. The basin parameters extracted from both of the DEM data have smaller differences, which shows that SRTM DEM (1″) has wide application prospects in hydrologic analysis.

Key wordsdomestic satellite    ZY-1 02C    GF-1    remote sensing image background data    updating
收稿日期: 2015-10-13      出版日期: 2017-05-03
基金资助:

国家自然科学基金资助项目(编号: U1304402)、卫星测绘技术与应用国家测绘地理信息局重点实验室经费资助项目(编号: KLAMTA-201405)及河南省高校科技创新团队支持计划资助项目(编号: 14IRTSTHN026)共同资助

作者简介: 于海洋(1978-),男,博士,主要从事遥感与GIS地学应用方面的研究。E-mail: 458722328@qq.com。
引用本文:   
于海洋, 罗玲, 马慧慧, 李辉. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017, 29(2): 138-143.
YU Haiyang, LUO Ling, MA Huihui, LI Hui. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 138-143.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.20      或      https://www.gtzyyg.com/CN/Y2017/V29/I2/138

[1] Schellekens J,Brolsma R J,Dahm R J,et al.Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model[J].Environmental Modelling & Software,2014,61:98-105.
[2] Taufik M,Putra Y S,Hayati N.The utilization of global digital elevation model for watershed management a case study:Bungbuntu sub watershed,pamekasan[J].Procedia Environmental Sciences,2015,24:297-302.
[3] 张会平,刘少峰,孙亚平,等.基于SRTM-DEM区域地形起伏的获取及应用[J].国土资源遥感,2006(1):31-35.doi:10.6046/gtzyyg.2006.01.07.
Zhang H P,Liu S F,Sun Y P,et al.The acquisition of local topographic relief and its application:An SRTM-DEM analysis[J].Remote Sensing for Land and Resources,2006(1):31-35.doi:10.6046/gtzyyg.2006.01.07.
[4] 万 杰,廖静娟,许 涛,等.基于ICESat/GLAS高度计数据的SRTM数据精度评估——以青藏高原地区为例[J].国土资源遥感,2015,27(1):100-105.doi:10.6046/gtzyyg.2015.01.16.
Wan J,Liao J J,Xu T,et al.Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data:A case study in the Tibetan plateau[J].Remote Sensing for Land and Resources,2015,27(1):100-105.doi:10.6046/gtzyyg.2015.01.16.
[5] 包黎莉,秦承志,朱阿兴.地形湿度指数算法误差的定量评价[J].地理科学进展,2011,30(1):57-64.
Bao L L,Qin C Z,Zhu A X.Quantitative error assessment of topographic wetness index algorithms[J].Progress in Geography,2011,30(1):57-64.
[6] Moore I D,Wilson J P.Length-slope factors for the revised universal soil loss equation:Simplied method of estimation[J].Journal of Soil and Water Conservation,1992,47(5):423-428.
[7] Moore I D,Grayson R B,Ladson A R.Digital terrain modelling:A review of hydrological,geomorphological,and biological applications[J].Hydrological Processes,1991,5(1):3-30.
[8] 于海洋,卢小平,程 钢,等.基于LiDAR数据的流域水系网络提取方法研究[J].地理与地理信息科学,2013,29(1):17-21,27.
Yu H Y,Lu X P,Cheng G,et al.Watershed channel network extraction from LiDAR data[J].Geography and Geo-Information Science,2013,29(1):17-21,27.

[1] 郑雄伟, 彭孛, 尚坤. 基于国产卫星的遥感地质解译能力评估[J]. 自然资源遥感, 2021, 33(3): 1-10.
[2] 蒋校, 路云阁, 孙昂, 李勇志, 连铮. 国产高分一号卫星数据在境外地质矿产调查中的应用——以伊朗法尔亚地区为例[J]. 国土资源遥感, 2021, 33(1): 199-204.
[3] 廖戬, 顾行发, 占玉林, 张雅洲, 任芯雨, 师帅一. 高分一号卫星影像谐波模型模拟方法研究[J]. 国土资源遥感, 2018, 30(3): 106-112.
[4] 王瑞军, 闫柏琨, 李名松, 董双发, 孙永彬, 汪冰. 甘肃红山地区重要控矿地质单元GF-1数据遥感解译与应用[J]. 国土资源遥感, 2018, 30(2): 162-170.
[5] 朱欣然, 吴波, 张强. 一种改进CVAPS的LUCC分类自动更新方法[J]. 国土资源遥感, 2018, 30(2): 29-37.
[6] 尹凌宇, 覃先林, 孙桂芬, 刘树超, 祖笑锋, 陈小中. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018, 30(1): 95-101.
[7] 董双发, 姜雪, 李名松, 王瑞军, 孙永彬. 基于国产卫星数据的全要素遥感地质解译体系研建——以干旱半干旱高寒山区为例[J]. 国土资源遥感, 2017, 29(s1): 21-26.
[8] 丁宇雪, 初禹, 薛广垠. 利用国产卫星数据开展湿地调查——以黑龙江省为例[J]. 国土资源遥感, 2017, 29(s1): 151-154.
[9] 郑雄伟, 魏英娟, 李春英, 雷兵, 甘宇航. 基于多源海量国产卫星影像智能优选实现[J]. 国土资源遥感, 2017, 29(s1): 13-20.
[10] 丁宇雪. 基于国产卫星数据自然资源调查研究——以黑龙江省中西部地区为例[J]. 国土资源遥感, 2017, 29(s1): 121-126.
[11] 张策, 揭文辉, 付丽华, 魏本赞. 新疆新源县滑坡灾害遥感影像特征及分布规律[J]. 国土资源遥感, 2017, 29(s1): 81-84.
[12] 张幼莹, 余江宽, 张丹丹, 林华暖. 国产卫星影像本底数据更新的实用方案——以地质灾害易发区遥感影像为例[J]. 国土资源遥感, 2017, 29(1): 149-157.
[13] 路云阁, 刘采, 王姣. 基于国产卫星数据的矿山遥感监测一体化解决方案——以西藏自治区为例[J]. 国土资源遥感, 2014, 26(4): 85-90.
[14] 万剑华, 厉梅, 任广波, 马毅. 基于变化检测的滨海湿地图高效更新方法[J]. 国土资源遥感, 2013, 25(4): 85-90.
[15] 付天新, 闫浩文, 骆成凤, 沙玉坤, 乔占明. 兰州市七里河区农用地分等更新评价与分析[J]. 国土资源遥感, 2012, 24(3): 140-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发