Please wait a minute...
国土资源遥感  2017, Vol. 29 Issue (2): 152-159    DOI: 10.6046/gtzyyg.2017.02.22
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多源高分卫星影像的果棉套种信息提取
王玉1, 2, 付梅臣1, 王力2, 王长耀2
1.中国地质大学(北京)土地科学技术学院,北京 100083;
2.中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101
Tree-cotton intercropping land extraction based on multi-source high resolution satellite imagery
WANG Yu1, 2, FU Meichen1, WANG Li2, WANG Changyao2
1. Land Use and Technology Department, China University of Geosciences(Beijing), Beijing 100083, China;
2. The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(1288 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 棉花与果树间作在新疆多地区普遍存在,了解套种情况有利于查明果棉产量以及与常规棉田产量结构差异。为此,提出了一种综合使用多源高分遥感数据的果棉间作信息提取方法。首先,在优化分割尺度基础上分析QuickBird卫星数据的光谱、形状和纹理特征并建立规则集; 其次,使用面向对象的分类方法逐步剔除非农田信息形成地块专题图,基于专题图选择最佳纹理特征提取果树分布并以地块为单位统计套种比例; 最后,依据棉花物候特征对高分一号数据多时相分类得到棉花种植信息,结合套种比例结果,统计果棉套种面积及程度。精度检验结果表明: 该文提出的方法与传统抽样调查法相比能够为大量地块信息的采集节省人工成本和时间,果棉信息提取精度为89.16%,可以在统计调查工作中用于新疆果棉套种的自动化提取。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵庆平
关键词 入射角效应余弦朗伯定律宽观测带海冰图像分割    
Abstract:The intercropping system of tree-cotton is widespread in Xinjiang because it may increase yield and revenue especially during the early years of tree plantations. The statistics of the intercropped area is a key element for yield estimation. A method which can extract the tree-cotton intercropped ratio from planting area themetic map is proposed in this paper. The VHR (very high resolution) QuickBird imagery and multispectral high spatial resolution (GF-1) data were combined for extracting the intercropped ratio using the object-oriented approach and multi-seasonal classification approach respectively. Farmland extraction is a critical step to produce the intercropped information. Since multi-resolution segmentation (MRS) has been proved to be one of the most successful image segmentation algorithms, the trial-and-error process has been used to determine the three main optimal segmentation parameters (scale, shape, compactness) to identify farmland and tree canopy hierarchically. The new rule sets which consider optimal,shape and semantic features have been implemented to compile the farmland thematic map. Then, the GLCM-based texture feature has been proposed to distinguish the tree canopy when the image is segmented again. Intercropping ratio in each crop segmentation unit is calculated by stacking the farmland themetic layer and the tree canopy layer together. Since then, multi-seasonal classification approach has been used to extract the tree-cotton intercropping ratio from the intercropping ratio map. In addition, this work presents two varying images composed of GF-1 and Landsat8. By analyzing the phenologycal calendar, optimum temporal periods for cotton and other major crops are initially determined. Cotton planting areas are extracted by field samples supported supervised classification. The GF-1 accuracy achieves 89.16% which is by far better than TM results. Finally, tree-cotton interplanting area and ratio are extracted based on tree-crop intercropping map and cotton planting map.
Key wordsincident angle effect    Lambert’s cosine law    wide-swath    sea ice    image segmentation
收稿日期: 2015-10-22      出版日期: 2017-05-03
基金资助:国家自然科学基金“基于高分辨率逐日模拟遥感数据的农作物物候参数精确提取研究”(编号: 41371358)和国家高技术研究发展计划(“863”计划)“先进环境监测技术设备——星-机-地生态环境质量遥感监测系统集成与示范”(编号: 2014AA06A511)共同资助
通讯作者: 付梅臣(1966-),男,教授,博士生导师,主要研究方向为土地利用与不动产评估。Email: fumeichen@163.com。   
作者简介: 王 玉(1988-),女,博士生,主要研究方向为土地利用与资源遥感。Email: wangyu881220@sina.com。
引用本文:   
王玉, 付梅臣, 王力, 王长耀. 基于多源高分卫星影像的果棉套种信息提取[J]. 国土资源遥感, 2017, 29(2): 152-159.
WANG Yu, FU Meichen, WANG Li, WANG Changyao. Tree-cotton intercropping land extraction based on multi-source high resolution satellite imagery. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 152-159.
链接本文:  
http://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.22      或      http://www.gtzyyg.com/CN/Y2017/V29/I2/152
[1] 林 涛,田立文,崔建平,等.南疆果棉间作系统棉花优质高效种植存在的技术问题及对策[C]//中国棉花学会2010年年会论文集.延吉:中国棉花学会,2010:101-103.
Lin T,Tian L W,Cui J P,et al.Study on the technical problems and countermeasures of cotton quality and efficient cultivation in fruit cotton intercropping system from southern Xinjiang[C]//The Paper Collection of 2010 China Cotton Association Academic Conference.Yanji:The Chinese Society of Cotton,2010:101-103.
[2] 郭仁松,徐海江,刘正兴,等.适宜新疆枣棉间作种植模式棉花品种筛选研究[J].棉花科学,2013,35(4):16-21.
Guo R S,Xu H J,Liu Z X,et al.Screening cotton varieties of jujube-cotton intercropping planting mode in Xinjiang[J].Cotton Sciences,2013,35(4):16-21.
[3] 夏婵娟,史彦江.枣棉间作的生态效应对棉花产量的影响[J].西安工程大学学报,2012,26(2):161-167.
Xia C J,Shi Y J.Development effect on crop ecology and yield in jujube-cotton intercropping[J].Journal of Xi'an Polytechnic University,2012,26(2):161-167.
[4] 赵 英,张 斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
Zhao Y,Zhang B,Wang M Z.Assessment of competition for water,fertilizer and light between components in the alley cropping system[J].Acta Ecologica Sinica,2006,26(6):1792-1801.
[5] 宋锋惠,吴正保,史彦江.枣棉间作对棉花产量和光环境的影响[J].新疆农业科学,2011,48(9):1624-1628.
Song F H,Wu Z B,Shi Y J.The effect of jujube-cotton intercropping system on the cotton yield and light environment[J].Xinjiang Agricultural Sciences,2011,48(9):1624-1628.
[6] Zhang D S,Zhang L Z,Liu J G,et al.Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations[J].Field Crops Research,2014,169:132-139.
[7] Mao L L,Zhang L Z,Zhao X H,et al.Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator[J].Field Crops Research,2014,155:67-76.
[8] 吴健生,刘建政,黄秀兰,等.基于面向对象分类的土地整理区农田灌排系统自动化识别[J].农业工程学报,2012,28(8):25-31.
Wu J S,Liu J Z,Huang X L,et al.Automatic identification of irrigation and drainage system in land reclamation area based on object-oriented classification[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(8):25-31.
[9] 张艳玲,冯凤英,闫浩文.高分辨率影像农田信息提取方法[J].地理空间信息,2010,8(1):78-80.
Zhang Y L,Feng F Y,Yan H W.Method for extracting farmland information from high resolution satellite image[J].Geospatial Information,2010,8(1):78-80.
[10] 朱超洪,刘 勇.基于影像认知和地学理解的面向对象分类研究[J].遥感技术与应用,2012,27(4):536-541.
Zhu C H,Liu Y.A study on object-oriented remote sensing image classification based on image cognition and geographical understanding[J].Remote Sensing Technology and Application,2012,27(4):536-541.
[11] 陈 杰,陈铁桥,梅小明,等.基于最优尺度选择的高分辨率遥感影像丘陵农田提取[J].农业工程学报,2014,30(5):99-106.
Chen J,Chen T Q,Mei X M,et al.Hilly farmland extraction from high resolution remote sensing imagery based on optimal scale selection[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(5):99-106.
[12] 张锦水,潘耀忠,韩立建,等.光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J].遥感学报,2007,11(4):500-510.
Zhang J S,Pan Y Z,Han L J,et al.Land use/cover change detection with multi-source data[J].Journal of Remote Sensing,2007,11(4):500-510.
[13] 胡潭高,朱文泉,阳小琼,等.高分辨率遥感图像耕地地块提取方法研究[J].光谱学与光谱分析,2009,29(10):2703-2707.
Hu T G,Zhu W Q,Yang X Q,et al.Farmland parcel extraction based on high resolution remote sensing image[J].Spectroscopy and Spectral Analysis,2009,29(10):2703-2707.
[14] Esch T,Metz A,Marconcini M,et al.Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland[J].International Journal of Applied Earth Observation and Geoinformation,2014,28:230-237.
[15] 谭永生,沈掌泉,贾春燕,等.QuickBird全色与多光谱影像融合方法比较研究[J].科技通报,2008,24(4):498-503.
Tan Y S,Shen Z Q,Jia C Y,et al.Study on fusion algorithms of QuickBird PAN and multi spectral images[J].Bulletin of Science and Technology,2008,24(4):498-503.
[16] 邬明权,牛 铮,王长耀.多源遥感数据时空融合模型应用分析[J].地球信息科学,2014,16(5):776-783.
Wu M Q,Niu Z,Wang C Y.Assessing the accuracy of spatial and temporal image fusion model of complex area in south China[J].Journal of Geo-Information Science,2014,16(5):776-783.
[17] 曹 宝,秦其明,马海建,等.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J].地理与地理信息科学,2006,22(2):46-49,54.
Cao B,Qin Q M,Ma H J,et al.Application of object-oriented approach to SPOT5 image classification:A case study in Haidian District,Beijing City[J].Geography and Geo-Information Science,2006,22(2):46-49,54.
[18] Liu Y,Bian L,Meng Y H,et al.Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68:144-156.
[19] Witharana C,Civco D L.Optimizing multi-resolution segmentation scale using empirical methods:Exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2(ED2)[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,87:108-121.
[20] 白文路.多光谱遥感影像的纹理特征研究[D].哈尔滨:哈尔滨工业大学,2010.
Bai W L.Texture Feature Research of Multi-Spectral Remote Sensing Image[D].Harbin:Harbin Institute of Technology,2010.
[21] 潘耀忠,李 乐,张锦水,等.基于典型物候特征的MODIS-EVI时间序列数据农作物种植面积提取方法——小区域冬小麦实验研究[J].遥感学报,2011,15(3):578-594.
Pan Y Z,Li L,Zhang J S,et al.Crop area estimation based on MODIS-EVI time series according to distinct characteristics of key phenology phases:A case study of winter wheat area estimation in small-scale area[J].Journal of Remote Sensing,2011,15(3):578-594.
[22] 赵良斌,曹卫斌,唐春华,等.新疆棉花遥感识别最佳时相的选择[J].新疆农业科学,2008,45(4):618-622.
Zhao L B,Cao W B,Tang C H,et al.Selection of the optimum temporal for cotton remote sensing identification in Xinjiang[J].Xinjiang Agricultural Sciences,2008,45(4):618-622.
[23] 郝鹏宇,牛 铮,王 力,等.基于历史时序植被指数库的多源数据作物面积自动提取方法[J].农业工程学报,2012,28(23):123-131.
Hao P Y,Niu Z,Wang L,et al.Multi-source automatic crop pattern mapping based on historical vegetation index profiles[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(23):123-131.
[24] Gallego F J,Kussul N,Skakun S,et al.Efficiency assessment of using satellite data for crop area estimation in Ukraine[J].International Journal of Applied Earth Observation and Geoinformation,2014,29:22-30.
[25] Kowalik W,Dabrowska-Zielinska K,Meroni M,et al.Yield estimation using SPOT-VEGETATION products:A case study of wheat in European countries[J].International Journal of Applied Earth Observation and Geoinformation,2014,32:228-239.
[1] 王碧晴,韩文泉,许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[2] 张永梅,孙海燕,胥玉龙. 一种改进的基于超像素的多光谱图像分割方法[J]. 国土资源遥感, 2019, 31(1): 58-64.
[3] 赵庆平. 朗伯定律的宽观测带SAR海冰图像分割[J]. 国土资源遥感, 2017, 29(2): 67-71.
[4] 滑永春, 李增元, 高志海, 郭中. 基于GF-2民勤县白刺包提取技术[J]. 国土资源遥感, 2017, 29(1): 71-77.
[5] 张涛, 杨晓梅, 童立强, 贺鹏. 基于多尺度图像库的遥感影像分割参数优选方法[J]. 国土资源遥感, 2016, 28(4): 59-63.
[6] 苏腾飞, 李洪玉, 屈忠义. 高分辨率遥感图像道路分割算法[J]. 国土资源遥感, 2015, 27(3): 1-6.
[7] 刘惠颖, 郭华东, 张露. 基于HJ-1CSAR数据的辽东湾海冰分类[J]. 国土资源遥感, 2014, 26(3): 125-129.
[8] 赵兴刚, 柳林, 钱静. 基于TerraSAR-X全极化数据的北极地区海冰信息提取[J]. 国土资源遥感, 2014, 26(3): 130-134.
[9] 徐宏根, 宋妍. 顾及阴影信息的高分辨率遥感图像变化检测方法[J]. 国土资源遥感, 2013, 25(4): 16-21.
[10] 薛峭, 赵书河. 基于最小核值相似区算法的高分辨率遥感图像分割方法[J]. 国土资源遥感, 2011, 23(4): 37-41.
[11] 马龙.
NASA MODIS海冰产品评价分析——以辽东湾海冰监测为例
[J]. 国土资源遥感, 2011, 23(1): 115-117.
[12] 韩震, 郭永飞, 李睿, 张琨.
长江口淤泥质潮滩环形水边线信息提取方法研究
[J]. 国土资源遥感, 2010, 22(4): 64-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《国土资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 Email:gtzyyg@agrs.cn; gtzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发