Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (3): 171-175    DOI: 10.6046/gtzyyg.2017.03.25
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
结合目标分割的高光谱城市地物分类
孙小芳
闽江学院地理科学系,福州 350121
Urban features classification based on objects segmentation and hyperspectral characteristics
SUN Xiaofang
Department of Geography, Minjiang College, Fuzhou 350121, China
全文: PDF(2964 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 结合高光谱影像地物光谱特征与高空间分辨率影像分割获得的目标对象进行地物分类。首先,对Hyperion影像进行坏线和Smile效应去除,经过FLAASH大气校正后,得到研究所用的155个波段; 其次,利用地物光谱曲线的特征点确定适合地物识别的光谱分辨率,进行Hyperion影像降维,生成降维后所需的21个宽波段; 然后,对IKONOS影像采用小波融合,利用多分辨率分割技术生成高空间分辨率影像目标对象; 最后,基于层次分析法对分割后生成的目标对象进行分类,采用模糊隶属函数利用植被红边效应、水体在近红外波段吸收特征进行第1层次分类,再取距离值最大的前10个Hyperion影像波段作为标准最邻近分类的特征波段,完成第2层次分类。分类结果表明,研究区共分出9种地物类型,分类效果明显优于最大似然法分类与光谱角填图法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐金东
倪梦莹
童向荣
张艳洁
郑强
关键词 多尺度稀疏分解字典遥感图像融合    
Abstract:Urban features classification is based on hyperspectral characteristics and high-resolution image segmentation objects. After the removal of bad lines and Smile effect, FLAASH atmospheric correction and 155 Hyperion bands were used in this study. Spectrum feature was used to determine objects recognition suitable spectral resolution, and after Hyperion dimensional reduction, 21 wide-bands were generated. Utility wavelet fusion was performed, and IKONOS high-resolution objects were generated by multi-resolution segmentation. On the basis of hierarchical analysis classification method for segmentation objects, fuzzy membership function of the vegetation red edge effect and the water absorption characteristics in the near infrared were used to complete first level classification. The larger distance of 10 Hyperion bands was used as feature bands, and the second level classification was completed by standard nearest neighbor classification. 9 types of urban features were separated. The classification results are better than the maximum likelihood classification and spectral angle mapper.
Key wordsmulti-scale    sparse decomposition    dictionary    remote sensing image    fusion
收稿日期: 2016-03-07      出版日期: 2017-08-15
基金资助:国家自然科学基金项目“基于MODIS BRDF 产品的叶片聚集度系数遥感反演与验证”(编号: 41271354)、福建省科技厅资助项目“基于高光谱特征与目标分割的城市地物识别研究”(编号: 2015J01627)和闽江学院资助项目“摄影测量学实践教学改革”(编号: MJU2014BD19)共同资助
作者简介: 作者简介: 孙小芳(1973-),女,副教授,主要从事遥感图像处理、高光谱与高空间分辨率遥感研究。Email:sunxf99@163.com。
引用本文:   
孙小芳. 结合目标分割的高光谱城市地物分类[J]. 国土资源遥感, 2017, 29(3): 171-175.
SUN Xiaofang. Urban features classification based on objects segmentation and hyperspectral characteristics. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 171-175.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.03.25      或      https://www.gtzyyg.com/CN/Y2017/V29/I3/171
[1] 潘灼坤,王 芳,夏丽华,等.高光谱遥感城市植被胁迫监测研究[J].遥感技术与应用,2012,27(1):68-76.
Pan Z K,Wang F,Xia L H,et al.Research on urban vegetation stress monitoring by hyperspectral remote sensing[J].Remote Sensing Technology and Application,2012,27(1):68-76.
[2] Zhang C Y,Xie Z X.Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery[J].Remote Sensing of Environment,2012,124:310-320.
[3] Roberts D A,Quattrochi D A,Hulley G C,et al.Synergies between VSWIR and TIR data for the urban environment:An evaluation of the potential for the Hyperspectral Infrared Imager(HyspIRI) Decadal Survey mission[J].Remote Sensing of Environment,2012,117:83-101.
[4] 龚建周,陈健飞,刘彦随.基于EO-1 Hyperion影像地物识别与分类不同方法的效果比较[J].应用基础与工程科学学报,2013,21(3):453-462.
Gong J Z,Chen J F,Liu Y S.Comparison of land use identification and classification using different models for EO-1 Hyperion images[J].Journal of Basic Science and Engineering,2013,21(3):453-462.
[5] 余先川,安卫杰,贺 辉.基于面向对象的无监督分类的遥感影像自动分类方法[J].地球物理学进展,2012,27(2):744-749.
Yu X C,An W J,He H.A method of auto classification based on object oriented unsupervised classification[J].Progress in Geophysics,2012,27(2):744-749.
[6] Petropoulos G P,Kalaitzidis C,Vadrevu K P.Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery[J].Computers and Geosciences,2012,41:99-107.
[7] Pu R L,Landry S.A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J].Remote Sensing of Environment,2012,124:516-533.
[8] Huang X,Lu Q K,Zhang L P.A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,90:36-48.
[9] 谭炳香,李增元,陈尔学,等.EO-1 Hyperion高光谱数据的预处理[J].遥感信息,2005(6):36-41.
Tan B X,Li Z Y,Chen E X,et al.Preprocessing of EO-1 Hyperion hyperspectral data[J].Remote Sensing Information,2005(6):36-41.
[10] Roshan-Chhetri P,Abd-Elrahman A.De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(5):620-636.
[11] 乔振民,邢立新,李淼淼,等.Hyperion数据玉米叶绿素含量制图[J].遥感技术与应用,2012,27(2):275-281.
Qiao Z M,Xing L X,Li M M,et al.Mapping of maize Chlorophyll content with Hyperion data[J].Remote Sensing Technology and Application,2012,27(2):275-281.
[12] 龚建周,陈健飞,刘彦随.EO-1 Hyperion高光谱影像的FLAASH大气校正与评价[J].广州大学学报(自然科学版),2011,10(5):69-75.
Gong J Z,Chen J F,Liu Y S.Atmospheric correction and evaluation for EO-1 Hyperion images based on FLAASH model[J].Journal of Guangzhou University(Natural Science Edition),2011,10(5):69-75.
[13] Pu R L,Gong P.Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping[J].Remote Sensing of Environment,2004,91(2):212-224.
[14] Hsu P H.Feature extraction of hyperspectral images using wavelet and matching pursuit[J].ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(1):78-92.
[15] Gmb H.Ecognition User Guide[M].Germany:Definients Image Company,2004:110-125.
[16] 王 露.面向对象的高分辨率遥感影像多尺度分割参数及分类研究[D].长沙:中南大学,2014.
Wang L.Analysing Classification and Segmentation Parameters Selection in High Resolution Remote Sensing Image Using Based on Object[D].Changsha:Central South University,2014.
[17] 王 雪,李培军,姜莎莎,等.利用机载LiDAR数据和高分辨率图像提取复杂城区建筑物[J].国土资源遥感,2016,28(2):106-111.doi:10.6046/gtzyyg.2016.02.17"> doi:10.6046/gtzyyg.2016.02.17.
Wang X,Li P J,Jiang S S,et al.Building extraction using airborne LiDAR data and very high resolution imagery over a complex urban area[J].Remote Sensing for Land and Resources,2016,28(2):106-111.doi:10.6046/gtzyyg.2016.02.17"> doi:10.6046/gtzyyg.2016.02.17.
[1] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[2] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[3] 温银堂, 王铁柱, 王书涛, 王贵川, 刘诗瑜, 崔凯. 基于多尺度分割的高分辨率遥感影像镶嵌线自动提取[J]. 自然资源遥感, 2021, 33(4): 64-71.
[4] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[5] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[6] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[7] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[8] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[9] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[10] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[11] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[12] 张红利, 罗蔚然, 李艳. 基于粒子群优化和像元分解模型的遥感影像时空融合[J]. 国土资源遥感, 2020, 32(4): 33-40.
[13] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[14] 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感, 2020, 32(4): 46-52.
[15] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发