Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (4): 48-56    DOI: 10.6046/gtzyyg.2017.04.09
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于流形学习的高分SAR图像建筑区提取方法
崔师爱1,2, 程博1, 刘岳明1,2
1.中国科学院遥感与数字地球研究所,北京 100094;
2.中国科学院大学,北京 100094
Research on methods of building area extraction from high resolution SAR image based on manifold learning
CUI Shiai1,2, CHENG Bo1, LIU Yueming1,2
1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
2. University of the Chinese Academy of Sciences, Beijing 100094, China
全文: PDF(12204 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 高空间分辨率(简称“高分”)SAR图像具有高维非线性特点,以高维空间蕴含的低维流形描述SAR图像,会更有利于目标识别。将流形学习应用到高维SAR目标识别的特征表达中,提出一种新的高分SAR图像建筑区提取方法。首先,对高分SAR图像进行预处理; 然后,采用灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取8种纹理特征,与灰度图像共同构建SAR图像的高维特征集; 利用自适应邻域选择的邻域保持嵌入(adaptive neighborhood selection neighborhoods preserving embedding, ANSNPE)算法对高维特征集进行特征提取,提取出新的特征; 最后,通过阈值分割及后处理提取建筑区,并进行精度评价。选择TerraSAR-X数据进行实验研究,结果表明,ANSNPE算法能够从高分SAR图像中有效提取建筑区,并具有较强的泛化能力; 通过训练数据获得的投影矩阵可直接应用到新样本中,建筑区提取精度达85%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴莹
钱博
王振会
关键词 被动微波遥感地表参数无线电频率干扰(RFI)东亚陆地    
Abstract:The characteristics of high resolution SAR image is nonlinear and of high dimension. The description of SAR image in which a low dimensional manifold is embedded in high dimensional space is more useful for targets recognition. Therefore, a novel scheme of high resolution SAR image building area extraction is proposed by applying manifold learning to feature representation of a high dimensional SAR targets recognition. Firstly, the high resolution SAR image was preprocessed, and then eight texture features were extracted with gray level co-occurrence matrix (GLCM)so as to construct feature set with gray feature. Adaptive neighborhood selection neighborhood preserving embedding (ANSNPE)algorithm was used to extract the new features from the feature set. Finally, the building area was extracted by threshold segmentation with the new features and post processing, and the accuracy was evaluated. Selecting TerraSAR-X as test data, the authors carried out the experiments. The results show that ANSNPE algorithm can effectively extract the building area from high resolution SAR image, and has strong generalization capability. The projection matrix obtained through the training data can be directly applied to the new samples, and the accuracy of building area extraction could reach higher than 85%.
Key wordspassive microwave remote sensing    land surface parameter    radio-frequency interference (RFI)    eastern Asia land
收稿日期: 2016-04-06      出版日期: 2017-12-04
:  TP751.1  
基金资助:国家自然科学基金项目“高分辨率SAR图像典型地物目标样本特征提取和识别研究”(编号: 61372189)资助
通讯作者: 程 博(1974-),男,博士,教授级高级工程师,主要从事遥感卫星信息处理与应用方面的研究。Email: chengbo@radi.ac.cn
作者简介: 崔师爱(1990-),女,硕士研究生,主要研究方向为遥感图像处理。Email: cuisa@radi.ac.cn。
引用本文:   
崔师爱, 程博, 刘岳明. 基于流形学习的高分SAR图像建筑区提取方法[J]. 国土资源遥感, 2017, 29(4): 48-56.
CUI Shiai, CHENG Bo, LIU Yueming. Research on methods of building area extraction from high resolution SAR image based on manifold learning. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 48-56.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.04.09      或      https://www.gtzyyg.com/CN/Y2017/V29/I4/48
[1] 邵 芸,范湘涛,刘 浩.基于目标时域散射特性的土地覆盖类型分类研究[J].国土资源遥感,2001,13(4):40-49,67.doi:10.6046/gtzyyg.2001.04.07.
Shao Y,Fan X T,Liu H.Land cover classification based on temporal backscatter signatures of the targets[J].Remote Sensing for Land and Resources,2001,13(4):40-49,67.doi:10.6046/gtzyyg.2001.04.07.
[2] 谭衢霖,邵 芸.雷达遥感图像分类新技术发展研究[J].国土资源遥感,2001,13(3):1-7.doi:10.6046/gtzyyg.2001.03.01.
Tan Q L,Shao Y.A study on the development of new classification technology for redar remote sensing imagery[J].Remote Sensing for Land and Resources,2001,13(3):1-7.doi:10.6046/gtzyyg.2001.03.01.
[3] 赵凌君,高 贵,匡纲要.基于变差函数纹理特征的高分辨率SAR图像建筑区提取[J].信号处理,2009,25(9):1433-1442.
Zhao L J,Gao G,Kuang G Y.Variogram-based built-up areas extraction from high-resolution SAR images[J].Signal Processing,2009,25(9):1433-1442.
[4] 朱俊杰,郭华东,范湘涛,等.单波段单极化高分辨率SAR图像纹理分类研究[J].国土资源遥感,2005,17(2):36-39.doi:10.6046/gtzyyg.2005.02.09.
Zhu J J,Guo H D,Fan X T,et al.The application of the wavelet texture method to the classification of single-band,single-polarized and high-resolution SAR images[J].Remote Sensing for Land and Resources,2005,17(2):36-39.doi:10.6046/gtzyyg.2005.02.09.
[5] 徐 佳,陈媛媛,黄其欢,等.综合灰度与纹理特征的高分辨率星载SAR图像建筑区提取方法研究[J].遥感技术与应用,2012,27(5):692-698.
Xu J,Chen Y Y,Huang Q H,et al.Built-up areas extraction in high resolution spaceborne SAR image based on the integration of grey and texture features[J].Remote Sensing Technology and Application,2012,27(5):692-698.
[6] 赵凌君,秦玉亮,高 贵,等.利用GLCM纹理分析的高分辨率SAR图像建筑区检测[J].遥感学报,2009,13(3):483-490.
Zhao L J,Qin Y L,Gao G,et al.Detection of built-up areas from high-resolution SAR images using the GLCM textural analysis[J].Journal of Remote Sensing,2009,13(3):483-490.
[7] Tu S T,Chen J Y,Yang W,et al.Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(1):170-179.
[8] 黄启宏,刘 钊.流形学习中非线性维数约简方法概述[J].计算机应用研究,2007,24(11):19-25.
Huang Q H,Liu Z.Overview of nonlinear dimensionality reduction methods in manifold learning[J].Application Research of Computers,2007,24(11):19-25.
[9] Tenenbaum J B,de Silva V,Langford J C.A global geometric
framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
[10] Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[11] Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
[12] Zhang Z Y,Zha H Y.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal on Scientific Computing,2005,26(1):313-338.
[13] He X F,Niyogi P.Locality Preserving Projections[C]//Advances in neural information processing systems (NIPS).Cambridge:MIT Press,2003,16:153-160.
[14] He X F,Cai D,Yan S C,et al.Neighborhood preserving embedding[C]//Proceedings of the 10th IEEE international conference on computer vision.Beijing,China:2005,2:1208-1213.
[15] 李 婷.基于流形学习的高分辨率SAR图像城市建筑区识别方法研究[D].北京:中国科学院大学,2015.
Li T.Method Research of Recognition of Urban Building Areas from High Resolution SAR Images Based on Manifold Learning[D].Beijing:University of Chinese Academy of Sciences,2015.
[16] 刘花丽.基于流形学习算法的人脸识别研究[D].兰州:兰州理工大学,2013.
Liu H L.Research on Face Recognition Based on Manifold Learning Algorithm[D].Lanzhou:Lanzhou University of Technology,2013.
[17] 左加阔.基于流形学习算法的新生儿疼痛表情识别[D].南京:南京邮电大学,2011.
Zuo J K.Manifold Learning Algorithm for Facial Expression Recognition of Pain in Neonates[D].Nanjing:Nanjing University of Posts and Telecommunications,2011.
[18] 惠康华,肖柏华,王春恒.基于自适应近邻参数的局部线性嵌入[J].模式识别与人工智能,2010,23(6):842-846.
Hui K H,Xiao B H,Wang C H.Self-regulation of neighborhood parameter for locally linear embedding[J].Pattern Recognition and Artificial Intelligence,2010,23(6):842-846.
[19] Huang L Z,Zheng L X,Chen C Y,et al.Locally linear embedding algorithm with adaptive neighbors[C]//Proceedings of international workshop on intelligent systems and applications.Wuhan,China:IEEE,2009:1-4.
[20] 张育林,庄 健,王 娜,等.一种自适应局部线性嵌入与谱聚类融合的故障诊断方法[J].西安交通大学学报,2010,44(1):77-82.
Zhang Y L,Zhuang J,Wang N,et al.Fusion of adaptive local linear embedding and spectral clustering algorithm with application to fault diagnosis[J].Journal of Xi’an Jiaotong University,2010,44(1):77-82.
[21] Haralick R M,Shanmugam K,Dinstein I H.Textural features for image classification[J].IEEE Transactions on Systems,Man,and Cybernetics,1973,SMC-3(6):610-621.
[22] 吴 樊,王 超,张 红.基于纹理特征的高分辨率SAR影像居民区提取[J].遥感技术与应用,2005,20(1):148-152.
Wu F,Wang C,Zhang H.Residential areas extraction in high resolution SAR image based on texture features[J].Remote Sensing Technology and Application,2005,20(1):148-152.
[1] 吴莹, 姜苏麟, 王振会. 无线电频率干扰对MWRI资料反演地表温度的影响[J]. 国土资源遥感, 2018, 30(4): 90-96.
[2] 吴莹, 姜苏麟, 王振会. 积雪陆表微波观测资料干扰识别方法对比分析[J]. 国土资源遥感, 2018, 30(3): 40-47.
[3] 吴莹, 钱博, 王振会. 被动微波遥感观测资料干扰对地表参数反演的影响分析[J]. 国土资源遥感, 2017, 29(3): 176-181.
[4] 白淑英, 吴奇, 史建桥, 顾海敏. 青藏高原积雪深度时空分布与地形的关系[J]. 国土资源遥感, 2015, 27(4): 171-178.
[5] 孙知文, 于鹏珊, 夏浪, 武胜利, 蒋玲梅, 郭镭. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1): 9-15.
[6] 周芳成, 宋小宁, 李召良. 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014, 26(1): 1-7.
[7] 马红章, 刘素美, 朱晓波, 孙根云, 孙林, 柳钦火. 基于被动微波遥感技术的玉米冠层叶面积指数反演[J]. 国土资源遥感, 2013, 25(3): 66-71.
[8] 吴莹, 王振会. 被动微波遥感反演地表发射率研究进展[J]. 国土资源遥感, 2012, 24(4): 1-7.
[9] 李欣欣, 张立新, 蒋玲梅. 山区地形对被动微波遥感影响的研究进展[J]. 国土资源遥感, 2011, 23(3): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发