Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (4): 88-97    DOI: 10.6046/gtzyyg.2017.04.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于子像元交换算法和地形数据的土地覆盖亚像元制图研究
虞舟鲁1, 王文超2, 戎奕2, 沈掌泉1
1.浙江大学环境与资源学院,杭州 310058;
2.杭州学联土地规划设计咨询有限公司,杭州 310030
Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data
YU Zhoulu1, WANG Wenchao2, RONG Yi2, SHEN Zhangquan1
1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
2. Hangzhou Federation of Land Planning and Design Consulting Co. Ltd., Hangzhou 310030, China
全文: PDF(6488 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 在将遥感影像应用于土地覆盖制图的过程中,混合像元会产生负面影响,尤其是在空间分辨率较低的情况下。软分类和超分辨率(亚像元/子像元)制图技术可以解决上述问题。子像元交换算法是一种简单而有效的亚像元制图技术,但也存在计算效率不够高和在超分辨率制图因子(scale factor,S)较大时制图精度较差的问题,其原因可能是亚像元制图只是从软分类结果中获得信息。因此,将数字高程模型(digital elevation model,DEM)及其衍生的数据作为子像元交换算法的辅助信息,研究提高其制图精度的有效性。研究结果表明: ①在DEM信息的辅助下,亚像元制图的精度得到了改善,即使在S较大时也是有效的; ②同时使用高程和坡度信息时的效果要好于单独应用高程或坡度信息; ③在S较大的情况下,制图精度对邻域范围大小的敏感性要低于S较小时; ④在DEM信息的辅助下,计算效率得到提高。实验结果表明,将DEM作为辅助信息进行亚像元制图是有效和可行的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙小芳
关键词 Hyperion降维IKONOS融合分割光谱特征分类    
Abstract:When remote sensing images are used to provide information for land cover mapping, it is negatively affected by the occurrence of mixed pixels in the remote sensing images, particularly in the case of coarse spatial resolutions. Soft classification and super-resolution(sub-pixel) mapping techniques can solve this kind of problems. The pixel-swapping(PS)algorithm is a simple and efficient technique for sub-pixel mapping. However, its computation is inefficient and yields poor mapping accuracy when the super-resolution scale factor (S)is large. A possible reason for this is that it only relies on the information from the fraction images. In this study, the digital elevation model(DEM) and their derivative data are employed as supplementary information for the PS algorithm so as to improve super-resolution mapping accuracy. Some conclusions have been reached: ① The sub-pixel mapping accuracy could be improved with the assistance of the DEM even if the scale factor is large; ② The mapping accuracy by incorporating both elevation and slope information is better than that of using elevation or slope data alone; ③ Mapping accuracy is less sensitive to the number of neighbors when scale factor is large;④ The computing efficiency is improved when incorporating DEM in pixel-swapping. Thus, it is feasible to use DEM as supplemental information for sub-pixel mapping.
Key wordsHyperion dimensional reduction    IKONOS fusion    segmentation    spectral characteristics    classification
收稿日期: 2016-05-05      出版日期: 2017-12-04
:  TP751.1  
基金资助:国家科技支撑计划项目“旱区多遥感平台农田信息精准获取技术集成与服务”(编号: 2012BAH29B04)资助
通讯作者: 沈掌泉(1969-),男,副教授,主要从事农业遥感与信息技术、计算机应用等方面的研究。Email: zhqshen@zju.edu.cn
作者简介: 虞舟鲁(1986-),男,研究实习员,主要从事农业遥感与信息技术应用、土地利用等方面的研究。Email: yuzl@zju.edu.cn。
引用本文:   
虞舟鲁, 王文超, 戎奕, 沈掌泉. 基于子像元交换算法和地形数据的土地覆盖亚像元制图研究[J]. 国土资源遥感, 2017, 29(4): 88-97.
YU Zhoulu, WANG Wenchao, RONG Yi, SHEN Zhangquan. Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 88-97.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.04.14      或      https://www.gtzyyg.com/CN/Y2017/V29/I4/88
[1] Tatem A J,Lewis H G,Atkinson P M,et al.Super-resolution land cover pattern prediction using a Hopfield neural network[J].Remote Sensing of Environment,2002,79(1):1-14.
[2] Kasetkasem T,Arora M K,Varshney P K.Super-resolution land cover mapping using a Markov random field based approach[J].Remote Sensing of Environment,2005,96(3/4):302-314.
[3] Foody G M.Remote Sensing Image Analysis:Including the Spatial Domain[M].Norwell,MA:Kluwer,2004:37-49.
[4] Mertens K C,Verbeke L P C,Ducheyne E I,et al.Using genetic algorithms in sub-pixel mapping[J].International Journal of Remote Sensing,2003,24(21):4241-4247.
[5] 任 武,葛 咏.遥感影像亚像元制图方法研究进展综述[J].遥感技术与应用,2011,26(1):33-44.
Ren W,Ge Y.Progress on sub-pixel mapping methods for remotely sensed images[J].Remote Sensing Technology and Application,2011,26(1):33-44.
[6] sensed images[M]//Kemp Z.Innovations in GIS IV.London:Taylor and Francis,1997:166-180.
[7] Atkinson P M.Super-resolution target mapping from soft-classified remotely sensed imagery[C]//Proceedings of the 5th International Conference on GeoComputation.Leeds,UK:University of Leeds,2001.
[8] Atkinson P M.Sub-pixel target mapping from soft-classified,remotely sensed imagery[J].Photogrammetric Engineering and Remote Sensing,2005,71(7):839-846.
[9] Foody G M.Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution[J].International Journal of Remote Sensing,1998,19(13):2593-2599.
[10] Grossa H N,Schotta J R.Application of spectral mixture analysis and image fusion techniques for image sharpening[J].Remote Sensing of Environment,1998,63(2):85-94.
[11] Schneider W.Land use mapping with subpixel accuracy from Landsat TM image data[C]//Proceedings of 25th International Symposium,Remote Sensing and Global Environmental Change.Austria,Graz:[s.n.],1993,2:155-161.
[12] Tatem A J,Lewis H G,Atkinson P M,et al.Super-resolution target identification from remotely sensed images using a Hopfield neural network[J].IEEE Transaction on Geoscience and Remote Sensing,2001,39(4):781-796.
[13] Nguyen M Q,Atkinson P M,Lewis H G.Superresolution mapping using a Hopfield neural network with fused images[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):736-749.
[14] Ruiz C P,López F J A.Restoring SPOT images using PSF-derived deconvolution filters[J].International Journal of Remote Sensing,2002,23(12):2379-2391.
[15] Verhoeye J.De Wulf R.Land cover mapping at sub-pixel scales using linear optimization techniques[J].Remote Sensing of Environment,2002,79(1):96-104.
[16] Mertens K C,Verbeke L P C,Westra T,et al.Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients[J].Remote Sensing of Environment,2004,91(2):225-236.
[17] Mertens K C,De Baets B,Verbeke L P C,et al.A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models[J].International Journal of Remote Sensing,2006,27(15):3293-3310.
[18] Shen Z Q,Qi J G,Wang K.Modification of pixel-swapping algorithm with initialization from a sub-pixel/pixel spatial attraction model[J].Photogrammetric Engineering and Remote Sensing,2009,75(5):557-567.
[19] 沈掌泉,虞舟鲁.基于单亲遗传算法和子像元/像元空间吸引模型的亚像元制图研究[J].遥感技术与应用,2015,30(1):129-134.
Shen Z Q,Yu Z L.Sub-pixel mapping with partheno-genetic algorithm and sub-pixel/pixel spatial attraction model[J].Remote Sensing Technology and Application,2015,30(1):129-134.
[20] Muslim A M,Foody G M,Atkinson P M.Localized soft classification for super-resolution mapping of the shoreline[J].International Journal of Remote Sensing,2006,27(11):2271-2285.
[21] Thornton M W,Atkinson P M,Holland D A.Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[J].International Journal of Remote Sensing,2006,27(3):473-491.
[22] Nguyen M Q,Atkinson P M,Lewis H G.Superresolution mapping using a Hopfield neural network with LiDAR data[J].IEEE Geoscience and Remote Sensing Letters,2005,2(3):366-370.
[1] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[2] 史飞飞, 高小红, 肖建设, 李宏达, 李润祥, 张昊. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1): 115-126.
[3] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[4] 范莹琳, 娄德波, 张长青, 魏英娟, 贾福东. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4): 153-161.
[5] 温银堂, 王铁柱, 王书涛, 王贵川, 刘诗瑜, 崔凯. 基于多尺度分割的高分辨率遥感影像镶嵌线自动提取[J]. 自然资源遥感, 2021, 33(4): 64-71.
[6] 李渊, 毋琳, 戚雯雯, 郭拯危, 李宁. 基于改进OGMRF-RC模型的SAR图像分类方法[J]. 自然资源遥感, 2021, 33(4): 98-104.
[7] 冯东东, 张志华, 石浩月. 基于多元数据的省会城市城中村精细提取[J]. 自然资源遥感, 2021, 33(3): 272-278.
[8] 王镕, 赵红莉, 蒋云钟, 何毅, 段浩. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析[J]. 自然资源遥感, 2021, 33(3): 72-79.
[9] 蒋校, 钟昶, 连铮, 吴亮廷, 邵治涛. 卫星遥感地质信息产品分类标准研究进展[J]. 自然资源遥感, 2021, 33(3): 279-283.
[10] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120.
[11] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[12] 郭文, 张荞. 基于注意力增强全卷积神经网络的高分卫星影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 100-107.
[13] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[14] 李根军, 杨雪松, 张兴, 李晓民, 李得林, 杜程. ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2): 134-140.
[15] 孟清, 白红英, 赵婷, 郭少壮, 齐贵增. 秦岭山地对气溶胶的生态屏障效应[J]. 国土资源遥感, 2021, 33(1): 240-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发