Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (1): 14-21    DOI: 10.6046/gtzyyg.2018.01.03
  本期目录 | 过刊浏览 | 高级检索 |
MODIS,CYCLOPES和GLASS 3种LAI产品在韩江流域的对比
刘远(), 周买春()
华南农业大学水利与土木工程学院,广州 510642
Comparison of MODIS, CYCLOPES and GLASS LAI over Hanjiang River basin
Yuan LIU(), Maichun ZHOU()
College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China
全文: PDF(1119 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

叶面积指数(leaf area index,LAI)是影响植被蒸腾、降水截留和能量交换的关键参数,是生态模型和陆面过程模型的重要输入参数。目前,全球许多机构基于多种遥感数据,采用不同的反演方法得到了多种LAI产品,MODIS,CYCLOPES和GLASS是其中时空分辨率较高的3种。以植被类型多样的韩江流域为对象,通过分析这3种LAI产品的空间和时间一致性,得到以下结论: ①CYCLOPES LAI存在大量的数据缺失,MODIS和GLASS LAI具有更好的空间和时间序列的完整性; 但MODIS LAI存在大量LAI突然变小的无效数据。②MODIS,CYCLOPES和GLASS LAI的空间分布基本都能与流域的植被类型相适应,其中,MODIS与GLASS LAI的空间分布一致性相对较好,但前者林地的LAI较后者大,非林地则相反; 而CYCLOPES LAI林地的LAI明显比前两者的小。③MODIS,CYCLOPES和GLASS LAI的时间序列过程线具有相同的变化趋势,GLASS LAI的过程曲线是3者中最完整和平滑的,MODIS LAI的曲线有明显的波动性。3种LAI反映的各种植被的季节变化具有较好的一致性,MODIS和GLASS LAI的相似程度比CYCLOPES LAI高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘远
周买春
关键词 叶面积指数植被类型时间序列季节变化韩江流域    
Abstract

Leaf area index (LAI) is a primary parameter for characterizing vegetation canopy structure. Since LAI can affect many vegetation ecological processes, such as transpiration, interception and energy exchange, it is used as a critical input for ecological models and land surface process models. At present, several global LAI datasets have been generated from different satellite remote sensing data, such as AVHRR, MODIS and VEGETATION, by different retrieval methods. MODIS, CYCLOPES and GLASS LAI datasets are those with higher spatial and temporal resolution. The spatial and temporal consistency of MODIS, CYCLOPES and GLASS LAI datasets was analyzed over Hanjiang River basin, which is covered with several vegetation types. Comparative study revealed the following characteristics: ① CYCLOPES LAI was observed to contain a large number of missing pixels, while MODIS and GLASS LAI products were more spatially and temporally complete. MODIS LAI contained many invalid pixels, whose LAI became much smaller abruptly in comparison with the LAI values just before or after this time. ② The spatial distributions of MODIS, CYCLOPES and GLASS LAI were mainly consistent with the vegetation types of the basin. The spatial distributions of MODIS and GLASS LAI were more consistent than those of CYCLOPES LAI. MODIS LAI was larger than GLASS LAI in forest pixels, while it was contrary in other pixels. CYCLOPES LAI was much smaller than MODIS and GLASS LAI in forest pixels. ③ MODIS, CYCLOPES and GLASS LAI products generally depicted similar temporal trajectories. GLASS LAI had the smoothest and completest trajectories, while the trajectories of MODIS LAI contained a large number of erratic fluctuations. All of these three LAI products depicted similar seasonal changes for different vegetation types. Compared with CYCLOPES LAI, a good agreement was achieved between MODIS and GLASS LAI values.

Key wordsleaf area index (LAI)    vegetation types    time series    seasonal change    Hanjiang River basin
收稿日期: 2016-07-24      出版日期: 2018-02-08
:  TP79  
基金资助:国家自然科学基金项目“概念性水文模型与分布式水文模型的结合——以新安江模型和TOPMODEL模型的互补为例”(编号: 41171029)资助
作者简介:

第一作者: 刘 远(1979-),男,副教授,博士,主要从事水文预报和地理信息系统研究。Email:lyuan@scau.edu.cn

引用本文:   
刘远, 周买春. MODIS,CYCLOPES和GLASS 3种LAI产品在韩江流域的对比[J]. 国土资源遥感, 2018, 30(1): 14-21.
Yuan LIU, Maichun ZHOU. Comparison of MODIS, CYCLOPES and GLASS LAI over Hanjiang River basin. Remote Sensing for Land & Resources, 2018, 30(1): 14-21.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.01.03      或      https://www.gtzyyg.com/CN/Y2018/V30/I1/14
Fig.1  韩江流域地理位置
LAI数据集 数据来源 覆盖范围 时间跨度 空间分辨率 时间分辨率/d 算法 真实/有效LAI
MOD15A2 MODIS 全球 2000年至今 1 km 8 三维辐射传输模型和查找表法(主算法) 真实LAI
CYCLOPES VEGETATION 全球 1999—2007年 1/112° 10 PROSPECT+SAIL的一维辐射传输模型和神经网络 有效LAI
GLASS AVHRR
MODIS
全球 1981—2012年 0.05°,1 km 8 广义回归神经网络GRNN 真实LAI
Tab.1  MODIS、CYCLOPES和GLASS LAI的基本信息
Fig.2  韩江流域土地覆盖分类
Fig.3  韩江流域MODIS,CYCLOPES和GLASS LAI的空间分布(2005年第25天和2007年第217天)
Fig.4  韩江流域 2005年1月MODIS LAI的空间分布
时间 LAI产品 平均值 最大值 最小值 标准差
2005年 MODIS 2.05 6.9 0.1 1.40
第25天 CYCLOPES 0.96 2.17 0 0.39
GLASS 1.54 4.9 0 0.91
2007年 MODIS 2.93 7.0 0.1 2.18
第217天 CYCLOPES 2.32 4.33 0 0.56
GLASS 3.79 5.5 0.2 0.90
Tab.2  韩江流域MODIS、CYCLOPES和GLASS LAI的特征值
Fig.5  韩江流域MODIS,CYCLOPES和GLASS LAI的频率分布曲线(2005年第25天和2007年第217天)
Fig.6  韩江流域MODIS,CYCLOPES和GLASS LAI的累积频率分布曲线(2005年第25天和2007年第217天)
Fig.7  MODIS,CYCLOPES和GLASS LAI在不同植被覆盖点的时间序列曲线
Fig.8  MODIS、CYCLOPES和GLASS LAI在不同植被覆盖点的季节变化
[1] 柳艺博,居为民,陈镜明,等.2000—2010年中国森林叶面积指数时空变化特征[J].科学通报,2012,57(16):1435-1445.
Liu Y B,Ju W M,Chen J M,et al.Spatial and temporal variations of forest LAI in China during 2000—2010[J].Chinese Science Bulletin,2012,57(22):2846-2856.
[2] Watson D J.Comparative physiological studies on the growth of field crops:I.Variation in net assimilation rate and leaf area between species and varieties,and within and between years[J].Annals of Botany,1947,11(41):41-76.
[3] Chen J M,Black T A.Defining leaf area index for non-flat leaves[J].Plant,Cell and Environment,1992,15(4):421-429.
[4] Champeaux J L,Masson V,Chauvin F.ECOCLIMAP:A global database of land surface parameters at 1 km resolution[J].Meteorological Applications,2005,12(1):29-32.
[5] Los S O,Collatz G J,Sellers P J,et al.A global 9-yr biophysical land surface dataset from NOAA AVHRR data[J].Journal of Hydrometeorology,2000,1(2):183-199.
[6] Ganguly S,Schull M A,Samanta A,et al.Generating vegetation leaf area index earth system data record from multiple sensors.Part 1:Theory[J].Remote Sensing of Environment,2008,112(12):4333-4343.
[7] Baret F,Hagolle O,Geiger B,et al.LAI,fAPAR and fCover CYCLOPES global products derived from VEGETATION:Part 1:Principles of the algorithm[J].Remote Sensing of Environment,2007,110(3):275-286.
[8] Deng F,Chen J M,Plummer S,et al.Algorithm for global leaf area index retrieval using satellite imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2219-2229.
[9] Myneni R B,Hoffman S,Knyazikhin Y,et al.Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J].Remote Sensing of Environment,2002,83(1/2):214-231.
[10] Bacour C,Baret F,Béal D,et al.Neural network estimation of LAI,fAPAR,fCover and LAI×Cab,from top of canopy MERIS reflectance data:Principles and validation[J].Remote Sensing of Environment,2006,105(4):313-325.
[11] Hu J N,Tan B,Shabanov N,et al.Performance of the MISR LAI and FPAR algorithm:A case study in Africa[J].Remote Sensing of Environment,2003,88(1/2):324-340.
[12] Hu J N,Su Y,Tan B,et al.Analysis of the MISR LAI/FPAR product for spatial and temporal coverage,accuracy and consistency[J].Remote Sensing of Environment,2007,107(1/2):334-347.
[13] Baret F,Weiss M,Lacaze R,et al.GEOV1:LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products.Part1:Principles of development and production[J].Remote Sensing of Environment,2013,137:299-309.
[14] Liu Y,Liu R G,Chen J M,et al.Expanding MISR LAI products to high temporal resolution with MODIS observations[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3915-3927.
[15] Xiao Z Q,Liang S L,Wang J D,et al.Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(1):209-223.
[16] Pisek J,Chen J M,Deng F.Assessment of a global leaf area index product from SPOT-4 vegetation data over selected sites in Canada[J].Canadian Journal of Remote Sensing,2007,33(4):341-358.
[17] Liu R,Chen J M,Liu J,et al.Application of a new leaf area index algorithm to China’s landmass using MODIS data for carbon cycle research[J].Journal of Environmental Management,2007,85(3):649-658.
[18] Li X F,Ju W M,Zhou Y L,et al.Retrieving leaf area index of forests in red soil hilly region using remote sensing data[C]//Proceedings of the SPIE,Volume 7471,Second International Conference on Earth Observation for Global Changes.Chengdu,China:SPIE,2009:74710L.
[19] Garrigues S,Lacaze R,Baret F,et al.Validation and intercomparison of global Leaf Area Index products derived from remote sensing data[J].Journal of Geophysical Research:Biogeosciences,2008,113(G2):G02028.
[20] 向阳,肖志强,梁顺林,等.GLASS叶面积指数产品验证[J].遥感学报,2014,18(3):573-596.
Xiang Y,Xiao Z Q,Liang S L,et al.Validation of Global LAnd Surface Satellite(GLASS) leaf area index product[J].Journal of Remote Sensing,2014,18(3):573-596.
[21] Jacquemoud S,Baret F.PROSPECT:A model of leaf optical properties spectra[J].Remote Sensing of Environment,1990,34(2):75-91.
[22] Verhoef W.Light scattering by leaf layers with application to canopy reflectance modeling:The SAIL model[J].Remote Sensing of Environment,1984,16(2):125-141.
[23] Ran Y H,Li X,Lu L,et al.Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory[J].International Journal of Geographical Information Science,2012,26(1):169-191.
[24] 冉有华,李新,卢玲.基于多源数据融合方法的中国1 km土地覆盖分类制图[J].地球科学进展,2009,24(2):192-203.
Ran Y H,Li X,Lu L.China land cover classification at 1 km spatial resolution based on a multi-source data fusion approach[J].Advances in Earth Science,2009,24(2):192-203.
[25] 刘远,周买春.3种IGBP分类系统的土地覆盖数据在韩江流域的对比分析[J].遥感技术与应用,2017,32(3):575-584.
Liu Y,Zhou M C.Comparative analysis on three land cover datasets based on IGBP classification system over Hanjiang River basin[J].Remote Sensing Technology and Application,2017,32(3):575-584.
[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[3] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[4] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[5] 孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
[6] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[7] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[8] 杨玉婷, 陈海兰, 左家旗. 1990—2017年间杭州市不透水面比例遥感监测[J]. 国土资源遥感, 2020, 32(2): 241-250.
[9] 朱爽, 张锦水. 时间序列低分影像修正中分遥感冬小麦分布[J]. 国土资源遥感, 2020, 32(1): 19-26.
[10] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[11] 吴迪, 陈健, 石满, 覃帮勇, 李盛阳. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019, 31(2): 59-65.
[12] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
[13] 曹西凤, 孙林, 赵子飞, 韩晓峰, 颜明捷. MODIS遥感产品在三江源地区草产量估测中的应用[J]. 国土资源遥感, 2018, 30(4): 115-124.
[14] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188.
[15] 尤慧, 苏荣瑞, 肖玮钰, 刘凯文, 高华东. 基于MODIS EVI时序数据的江汉平原油菜种植分布信息提取[J]. 国土资源遥感, 2018, 30(1): 173-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发