Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (1): 78-86    DOI: 10.6046/gtzyyg.2018.01.11
  本期目录 | 过刊浏览 | 高级检索 |
基于随机森林算法的地表温度降尺度研究
华俊玮(), 祝善友(), 张桂欣
南京信息工程大学地理与遥感学院,南京 210044
Downscaling land surface temperature based on random forest algorithm
Junwei HUA(), Shanyou ZHU(), Guixin ZHANG
School of Geography and Remote Sensing, Nanjing University of Information Science & Technology, Nanjing 210044, China
全文: PDF(2238 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地表温度(land surface temperature,LST)是地面能量平衡等模型中的重要参数之一。高时间分辨率的遥感LST可通过降尺度处理实现空间分辨率的提高,这对详细的LST时空分布监测具有重要意义。以北京市为研究区,选择Landsat8 OLI/TIRS数据,通过改进的单窗(improved mono-window,IMW)算法反演LST作为验证数据,在计算归一化差值植被指数(normalized difference vegetation index,NDVI)和归一化差值建筑指数(normalized difference built-up index,NDBI)等多种遥感指数并模拟至1 000 m空间分辨率的基础上,联合空间分辨率为1 000 m的MODIS/LST产品,利用随机森林(random forest,RF)模型实现LST(100 m空间分辨率)降尺度,并与多因子回归方法和基于植被指数的LST锐化算法(TsHARP)2种常用降尺度方法进行对比。实验结果表明: 以模拟Landsat/LST作为降尺度数据源,RF方法降尺度LST的均方根误差(root-mean-square,RMSE)为2.01 K,与多因子回归方法和TsHARP算法相比,精度分别提高了0.16 K和0.44 K; 针对MODIS/LST降尺度时,RF方法的RMSE为2.29 K,与多因子回归方法和TsHARP算法相比,精度分别提高了0.42 K和0.50 K; 针对不同地表类型,RF算法降尺度效果不同,其中高植被覆盖区表现最优,RMSE为1.81 K; 城镇表面因其空间异质性,RMSE则达到了2.75 K。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
华俊玮
祝善友
张桂欣
关键词 遥感地表温度(LST)降尺度随机森林(RF)    
Abstract

Land surface temperature(LST)is an important parameter in the model of energy balance of the earth surface. The enhanced spatial resolution of high temporal resolution of remote sensing surface temperature can be realized by downscaling algorithm, which is of great significance for monitoring the spatial and temporal distribution of the LST. In this paper, Beijing City was taken as the study area, and the LST with 100 m spatial resolution was retrieved by using Landsat8 OLI/TIRS data through improved mono-window(IMW)algorithm,which was used as validation data. Besides,the normalized difference vegetation index(NDVI),normalized difference built-up index(NDBI)and other remote sensing index were calculated and simulated to the spatial resolution of 1 000 m, which was united with the MODIS/LST with the spatial resolution of 1 000 m to be input into the random forest(RF)model to acquire downscaled LST(100 m). Meanwhile, the downscaled results retrieved by RF algorithm were compared with the two commonly used methods of downscaling, multi factor regression method and LST sharpening algorithm based on vegetation index (TsHARP). The results show that, with the simulated Landsat/LST as the data source, the RMSE of downscaling LST retrieved by RF was 2.01 K, and the RMSE was improved by 0.16 K and 0.44 K compared with the multi factor regression method and TsHARP algorithm respectively. For the MODIS/LST, the RMSE of downscaling LST retrieved by RF was 2.29 K, and the RMSE was improved by 0.42 K and 0.50 K compared with multi factor regression method and TsHARP algorithm respectively. For different land surface types, the effects of RF downscaling algorithm are different. The effect of high vegetation coverage area is the best, and the RMSE is 1.81 K. Due to the spatial heterogeneity of the urban surface, the RMSEhas reached a maximum of 2.75 K.

Key wordsremote sensing    land surface temperature(LST)    downscale    random forest(RF)
收稿日期: 2016-09-06      出版日期: 2018-02-08
:  TP751.1  
基金资助:国家自然科学基金项目“城市街道峡谷气温时空分布与变化机制模拟研究”(编号: 41571418)、“基于遥感方法的有效天空开阔度模拟及其夜间城市热岛应用研究”(编号: 41401471)和江苏省“青蓝工程”项目共同资助
作者简介:

第一作者: 华俊玮(1992-),男,硕士研究生,主要研究方向为3S技术在气象上的应用。Email:hjwnj19920602@163.com

引用本文:   
华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.01.11      或      https://www.gtzyyg.com/CN/Y2018/V30/I1/78
Fig.1  随机森林模型建立过程
Fig.2  模型误差随决策树数目的变化
Fig.3  随机森林变量重要性
Fig.4  基于模拟Landsat/LST的不同分辨率降尺度效果
分辨率/
m
RMSE / K R2
随机
森林法
多因子
回归法
TsHARP
随机
森林法
多因子
回归法
TsHARP
500 0.87 1.17 1.11 0.69 0.65 0.59
200 1.62 1.70 1.78 0.57 0.54 0.52
100 2.01 2.17 2.45 0.52 0.49 0.45
Tab.1  不同分辨率地表温度降尺度均方根误差
Fig.5  植被覆盖区降尺度结果
Fig.6  水域降尺度结果
Fig.7  城镇区域降尺度结果
验证区域 RMSE/K R2
随机
森林法
多因子
回归法
TsHARP
随机
森林法
多因子
回归法
TsHARP
全局 2.29 2.71 2.79
植被 1.81 2.01 2.02 0.56 0.46 0.44
水域 2.09 2.57 2.85 0.58 0.43 0.42
城镇 2.75 2.93 2.93 0.21 0.01 0.07
Tab.3  不同方法在不同区域的MODIS/LST降尺度结果精度
Fig.8  不同数据源随机森林降尺度结果误差直方图
[1] Kustas W,Anderson M.Advances in thermal infrared remote sensing for land surface modeling[J].Agricultural and Forest Meteorology,2009,149(12):2071-2081.
[2] Anderson M C,Allen R G,Morse A,et al.Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources[J].Remote Sensing of Environment,2012,122:50-65.
[3] 宋春桥,游松财,刘高焕,等.基于TVDI的藏北地区土壤湿度空间格局[J].地理科学进展,2011,30(5):569-576.
Song C Q,You S C,Liu G H,et al.The spatial pattern of soil moisture in northern Tibet based on TVDI method[J].Progress in Geography,2011,30(5):569-576.
[4] 叶彩华,刘勇洪,刘伟东,等.城市地表热环境遥感监测指标研究及应用[J].气象科技,2011,39(1):95-101.
Ye C H,Liu Y H,Liu W D,et al.Research on urban surface heat environment monitoring indexes and its application[J].Meteorological Science and Technology,2011,39(1):95-101.
[5] Zhan W F,Chen Y H,Zhou J,et al.Disaggregation of remotely sensed land surface temperature:Literature survey,taxonomy,issues,and caveats[J].Remote Sensing of Environment,2013,131:119-139.
[6] Kustas W P,Norman J M,Anderson M C,et al.Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship[J].Remote Sensing of Environment,2003,85(4):429-440.
[7] Agam N,Kustas W P,Anderson M C,et al.A vegetation index based technique for spatial sharpening of thermal imagery[J].Remote Sensing of Environment,2007,107(4):545-558.
[8] Essa W,Verbeiren B,van der Kwast J, et al.Evaluation of the DisTrad thermal sharpening methodology for urban areas[J].International Journal of Applied Earth Observation and Geoinformation,2012,19:163-172.
[9] Essa W,van der Kwast J,Verbeiren B,et al.Downscaling of thermal images over urban areas using the land surface temperature-impervious percentage relationship[J].International Journal of Applied Earth Observation and Geoinformation,2013,23:95-108.
[10] Zhu S Y,Guan H,Millington A C,et al.Disaggregation of land surface temperature over a heterogeneous urban and surrounding suburban area:A case study in Shanghai,China[J].International Journal of Remote Sensing,2013,34(5):1707-1723.
[11] Wang F,Qin Z H,Li W J,et al.An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data[J].Sensors,2015,15(1):304-330.
[12] Bindhu V M,Narasimhan B,Sudheer K P.Development and verification of a non-linear disaggregation method(NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration[J].Remote Sensing of Environment,2013,135:118-129.
[13] Hutengs C,Vohland M.Downscaling land surface temperatures at regional scales with random forest regression[J].Remote Sensing of Environment,2016,178:127-141.
[14] Wang F,Qin Z H,Song C Y,et al.An improved mono-window algorithm for land surface temperature retrieval from Landsat8 thermal infrared sensor data[J].Remote Sensing,2015,7(4):4268-4289.
[15] 王祎婷,谢东辉,李亚惠.光谱指数趋势面的城市地表温度降尺度转换[J].遥感学报,2014,18(6):1169-1181.
Wang Y T,Xie D H,Li Y H.Downscaling remotely sensed land surface temperature over urban areas using trend surface of spectral index[J].Journal of Remote Sensing,2014,18(6):1169-1181.
[16] 聂建亮,武建军,杨曦,等.基于地表温度-植被指数关系的地表温度降尺度方法研究[J].生态学报,2011,31(17):4961-4969.
Nie J L,Wu J J,Yang X,et al.Downscaling land surface temperature based on relationship between surface temperature and vegetation index[J].Acta Ecologica Sinica,2011,31(17):4961-4969.
[17] 全金玲,占文凤,陈云浩,等.遥感地表温度降尺度方法比较——性能对比及适应性评价[J].遥感学报,2013,17(2):361-387.
Quan J L,Zhan W F,Chen Y H,et al.Downscaling remotely sensed land surface temperatures:A comparison of typical methods[J].Journal of Remote Sensing,2013,17(2):361-387.
[18] Rouse J W Jr,Haas R H,Schell J A,et al.Monitoring vegetation systems in the Great Plains with ERTS[C]//Third Earth Resources Technology Satellite-1 Symposium.Washington,D.C:NASA,1974:309.
[19] Huete A R.A soil-adjusted vegetation index(SAVI)[J].Remote Sensing of Environment,1988,25(3):295-309.
[20] Qi J,Chehbouni A,Huete A R,et al.A modified soil adjusted vegetation index[J].Remote Sensing of Environment,1994,48(2):119-126.
[21] Goel N S,Qin W H.Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar:A computer simulation[J].Remote Sensing Reviews,1994,10(4):309-347.
[22] Zha Y,Gao J,Ni S.Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J].International Journal of Remote Sensing,2003,24(3):583-594.
[23] 吴志杰,赵书河.基于TM图像的“增强的指数型建筑用地指数”研究[J].国土资源遥感,2012,24(2):50-55.doi:10.6046/gtzyyg.2012.02.10.
Wu Z J,Zhao S H.A study of enhanced index-based built-up index based on Landsat TM imagery[J].Remote Sensing for Land and Resources,2012,24(2):50-55.doi:10.6046/gtzyyg.2012.02.10.
[24] Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 杜懿, 王大洋, 王大刚. GPM卫星降水产品空间降尺度研究——以贵州省为例[J]. 自然资源遥感, 2021, 33(4): 111-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发