Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (2): 12-20    DOI: 10.6046/gtzyyg.2018.02.02
     综述 本期目录 | 过刊浏览 | 高级检索 |
合成孔径雷达遥感地质应用综述
郑鸿瑞1,2,3(), 徐志刚1,2,3, 甘乐1,2,3, 陈玲4, 杨金中4, 杜培军1,2,3()
1.南京大学卫星测绘技术与应用国家测绘地理信息局重点实验室,南京 210023
2.南京大学江苏省地理信息技术重点实验室,南京 210023
3.南京大学江苏省地理信息资源开发与利用协同创新中心,南京 210023
4.中国国土资源航空物探遥感中心,北京 100083
Synthetic aperture Radar remote sensing technology in geological application: A review
Hongrui ZHENG1,2,3(), Zhigang XU1,2,3, Le GAN1,2,3, Ling CHEN4, Jinzhong YANG4, Peijun DU1,2,3()
1.Key Laboratory for Satellite Mapping Technology and Application of State Administration of Surveying,Mapping and Geoinformation of China,Nanjing University,Nanjing 210023,China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing 210023, China
4. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
全文: PDF(2512 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

合成孔径雷达(synthetic aperture Radar,SAR)凭借其全天时、全天候的对地观测能力以及独特的穿透成像特性,在热带雨林及沙漠等典型覆盖地区遥感地质调查中得到了广泛应用。通过阐述地质体微波散射机理,详细总结了SAR在地质考古、岩性识别、地质构造探测和矿产勘查等应用领域的国内外研究进展; 介绍了多源影像融合技术在国内外雷达地质调查中的应用情况,并结合项目实例对其重要作用进行了分析。虽然雷达技术受影像自身特点、处理技术以及数据源等问题的制约,在国内地质调查中的应用水平依然较低,但随着软硬件技术的发展,雷达遥感技术在国内地质应用中的作用也将愈发重要。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑鸿瑞
徐志刚
甘乐
陈玲
杨金中
杜培军
关键词 合成孔径雷达遥感地质应用多源数据融合综述    
Abstract

Synthetic aperture Radar (SAR) is widely used in tropical rainforest and desert areas remote sensing geological survey by virtue of its all-day and all-weather earth observation capability and unique penetrating imaging characteristics. In this paper, the geological bodies microwave scattering mechanism which is the theoretical basis of the SAR geological application is expounded. This paper summarizes the domestic and foreign applications of SAR in geological archeology, mineral exploration, lithology and geological structure identification, reports the research progress of multi - source image fusion technology in Radar geology applications, and explains its important function in combination with practical project examples. Constrained by image characteristics, processing technology and data sources, the domestic SAR geological application remains at a very low level. With the development of hardware and software technology, the Radar remote sensing technology will become more and more important in domestic geological applications.

Key wordssynthetic aperture Radar (SAR)    remote sensing geological application    multi-source data fusion    review
收稿日期: 2016-11-15      出版日期: 2018-05-30
:  TP79  
基金资助:中国地质调查局地质调查项目“红石山西部雷达数据处理与解译”(编号: DD2016006814);中国地质调查局地质矿产调查评价项目“星载全极化SAR数据地质矿产应用技术研究与示范”(编号: 12120115040601)
通讯作者: 杜培军
引用本文:   
郑鸿瑞, 徐志刚, 甘乐, 陈玲, 杨金中, 杜培军. 合成孔径雷达遥感地质应用综述[J]. 国土资源遥感, 2018, 30(2): 12-20.
Hongrui ZHENG, Zhigang XU, Le GAN, Ling CHEN, Jinzhong YANG, Peijun DU. Synthetic aperture Radar remote sensing technology in geological application: A review. Remote Sensing for Land & Resources, 2018, 30(2): 12-20.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.02.02      或      https://www.gtzyyg.com/CN/Y2018/V30/I2/12
传感器 国家或地区 波段 发射
时间
设计
寿命/a
重访
周期/d
Radarsat-2 加拿大 C波段 2007年 7 24
TerraSAR-X 德国 X波段 2007年 5 11
COSMO-SkyMed 意大利 X波段 2007年 5 16
Risat-1 印度 C波段 2012年 5 25
HJ-1 C 中国 S波段 2012年 3 31
KOMPSAT-5 韩国 X波段 2013年 5 28
ALOS-2 日本 L波段 2014年 5 14
Sentinel-1 欧洲 C波段 2014年 7 12
GF-3 中国 C波段 2016年 8
传感器 国家 波段 发射
时间
设计
寿命/a
重访
周期/d
SAOCOM 阿根廷 L波段 2018年(预计) 5 16
CSG-1 意大利 X波段 2018年(预计) 8 16
Obzor-RN1 俄罗斯 X波段 2019年(预计) 7 2
BIOMASS 欧洲 P波段 2020年(预计) 5
TanDEM-L 德国 L波段 2022年(预计) 12 16
SCLP 美国 Ku和
X波段
2030年(预计) 4 15
Tab.1  目前在轨和准备发射的SAR传感器及其相关参数
Fig.1  断裂构造光学影像和融合影像对比
Fig.2  岩脉在光学影像和融合影像上的对比
[1] 王润生, 熊盛青, 聂洪峰 , 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011,85(11):1699-1743.
Wang R S, Xiong S Q, Nie H F , et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011,85(11):1699-1743.
[2] 李志忠, 杨日红, 党福星 , 等. 高光谱遥感卫星技术及其地质应用[J]. 地质通报, 2009,28(2/3):270-277.
doi: 10.3969/j.issn.1671-2552.2009.02.020
Li Z Z, Yang R H, Dang F X , et al. The hyperspectral remote sensing technology and its application[J]. Geological Bulletin of China, 2009,28(2/3):270-277.
[3] 闫柏琨, 王润生, 甘甫平 , 等. 热红外遥感岩矿信息提取研究进展[J]. 地球科学进展, 2005,20(10):1116-1126.
doi: 10.3321/j.issn:1001-8166.2005.10.011
Yan B K, Wang R S, Gan F P , et al. Progresses in minerals information extraction using thermal remote sensing[J]. Advances in Earth Science, 2005,20(10):1116-1126.
[4] 谭衢霖, 邵芸, 范湘涛 . 雷达遥感的地质学应用及其进展[J]. 遥感技术与应用, 2002,17(5):269-275.
Tan Q L, Shao Y, Fan X T . Geology application of Radar remote sensing technology and its development[J]. Remote Sensing Technology and Application, 2002,17(5):269-275.
[5] 汤沛, 邱玉宝, 赵志芳 . 合成孔径雷达(SAR)在地质、灾害应用研究中的新进展[J]. 云南大学学报(自然科学版), 2012,34(s2):305-313.
Tang P, Qiu Y B, Zhao Z F . The new progress of synthetic aperture Radar(SAR)in geological and disaster researching[J]. Journal of Yunnan University, 2012,34(s2):305-313.
[6] 郭华东 . 侧视雷达成象因素及其地质应用[J].国外地质勘探技术, 1981(1):16-22.
Guo H D . Imaging factors of side-view Radar and its geological application[J].Foreign Geoexploration Technology, 1981(1):16-22.
[7] 谭衢霖 . SAR遥感数据用于岩性识别与分类的研究[J]. 地质找矿论丛, 2009,24(4):349-353.
Tan Q L . Application of SAR remote sensing data to lithological identification and rock classification[J]. Contributions to Geology and Mineral Resources Research, 2009,24(4):349-353.
[8] 赵福岳, 张瑞江, 杨清华 . 合成孔径雷达图像填图方法与应用探讨[J]. 国土资源遥感, 2007,19(4):100-105.doi: 10.6046/gtzyyg.2007.04.22.
doi: 10.3969/j.issn.1001-070X.2007.04.022
Zhao F Y, Zhang R J, Yang Q H . Geological mapping method based on synthetic-aperture Radar image and its application[J]. Remote Sensing for Land and Resources, 2007,19(4):100-105.doi: 10.6046/gtzyyg.2007.04.22.
[9] McCauley J F,Schaber G G,Breed C S,et al.Subsurface valleys and geoarcheology of the eastern Sahara revealed by shuttle Radar[J]. Science, 1982,218(4576):1004-1020.
doi: 10.1126/science.218.4576.1004 pmid: 17790589
[10] 孙永军, 杨清华, 赵福岳 , 等. 地表浅层不同介质覆盖区雷达图像信息构成要素分析[J]. 新疆地质, 2007,25(1):122-126.
Sun Y J, Yang Q H, Zhao F Y , et al. Detect and recognition of the composing factor of Radar image information in shallow covered geological body and fault in arid area[J]. Xinjiang Geology, 2007,25(1):122-126.
[11] Freeman A, Durden S L . A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(3):963-973.
doi: 10.1109/36.673687
[12] 谭衢霖, 邵芸 .成像雷达(SAR)遥感地质应用综述[J]. 地质找矿论丛, 2003,18(1):59-65.
doi: 10.6053/j.issn.1001-1412.2003.1. 012
Tan Q L, Shao Y . Geological application of Radar remote sensing technology and its development[J]. Contributions to Geology and Mineral Resources Research, 2003,18(1):59-65.
[13] 王翠珍, 郭华东 . 极化雷达目标分解方法用于岩性分类[J]. 遥感学报, 2000,4(3):219-223.
doi: 10.3321/j.issn:1007-4619.2000.03.011
Wang C Z, Guo H D . Lithological classification of polarimetric SAR data with target decomposition method[J]. Journal of Remote Sensing, 2000,4(3):219-223.
[14] Blom R G, Crippen R E, Elachi C . Detection of subsurface features in SEASAT Radar images of Means Valley,Mojave Desert,California[J]. Geology, 1984,12(6):346-349.
doi: 10.1130/0091-7613(1984)122.0.CO;2
[15] Hoekstra P, Delaney A . Dielectric properties of soils at UHF and microwave frequencies[J]. Journal of Geophysical Research, 1974,79(11):1699-1708.
doi: 10.1029/JB079i011p01699
[16] Roth L E, Elachi C . Coherent electromagnetic losses by scattering from volume inhomogeneities[J]. IEEE Transactions on Antennas and Propagation, 1975,23(5):674-675.
doi: 10.1109/TAP.1975.1141170
[17] Elachi C, Roth L E, Schaber G G.Spaceborne Radar subsurface imaging in hyperarid regions[J].IEEE Transactions on Geoscience and Remote Sensing, 1984,GE- 22(4):383-388.
doi: 10.1109/TGRS.1984.350641
[18] Berlin G L, Tarabzouni M A, Al-Naser A H, et al.SIR-B subsurface imaging of a sand-buried landscape:Al Labbah Plateau, Saudi Arabia[J].IEEE Transactions on Geoscience and Remote Sensing, 1986,GE- 24(4):595-602.
doi: 10.1109/TGRS.1986.289676
[19] 陈富龙 . 雷达遥感考古机理、应用与展望[J]. 遥感技术与应用, 2015,30(5):835-841.
doi: 10.11873/j.issn.1004-0323.2015.5.0835
Chen F L . Principle,application and prospects of synthetic aperture Radar (SAR) remote sensing in archaeology[J]. Remote Sensing Technology and Application, 2015,30(5):835-841.
[20] Adams R E W,Brown Jr W E, Culbert T P.Radar mapping,archeology,and ancient Maya land use[J]. Science, 1981,213(4515):1457-1468.
doi: 10.1126/science.213.4515.1457 pmid: 17780866
[21] Schaber G G, McCauley J F,Breed C S.The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf,Egypt[J]. Remote Sensing of Environment, 1997,59(2):337-363.
doi: 10.1016/S0034-4257(96)00143-5
[22] Paillou P, Grandjean G, Baghdadi N , et al. Subsurface imaging in south-central Egypt using low-frequency radar:Bir Safsaf revisited[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(7):1672-1684.
doi: 10.1109/TGRS.2003.813275
[23] Paillou P, Lopez S, Farr T , et al. Mapping subsurface geology in sahara using L-band SAR:First results from the ALOS/PALSAR imaging Radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010,3(4):632-636.
doi: 10.1109/JSTARS.2010.2056915
[24] Gaber A, Koch M, Griesh M H , et al. Near-surface imaging of a buried foundation in the Western Desert,Egypt,using space-borne and ground penetrating Radar[J]. Journal of Archaeological Science, 2013,40(4):1946-1955.
doi: 10.1016/j.jas.2012.12.019
[25] Patruno J, Dore N, Crespi M , et al. Polarimetric multifrequency and multi-incidence SAR sensors analysis for archaeological purposes[J]. Archaeological Prospection, 2013,20(2):89-96.
doi: 10.1002/arp.1448
[26] Dore N, Patruno J, Pottier E , et al. New research in polarimetric SAR technique for archaeological purposes using ALOS PALSAR data[J]. Archaeological Prospection, 2013,20(2):79-87.
doi: 10.1002/arp.1446
[27] Freeman A, Hensley S, Moore E. Analysis of Radar images of Angkor,Cambodia [C]//Proceedings of International Geoscience and Remote Sensing Symposium.Hamburg,Germany:IEEE, 1999,5:2572-2574.
[28] Linck R, Busche T, Buckreuss S , et al. Possibilities of archaeological prospection by high-resolution X-band satellite Radar-a case study from Syria[J]. Archaeological Prospection, 2013,20(2):97-108.
doi: 10.1002/arp.1444
[29] 郭华东 . 航天多波段全极化干涉雷达的地物探测[J]. 遥感学报, 1997,1(1):32-39.
doi: 10.11834/jrs.19970105
Guo H D . Spaceborne multifrequency,polarametric and interferometric Radar for detection of the targets on earth surface and subsurface[J]. Journal of Remote Sensing, 1997,1(1):32-39.
[30] Lu X Q, Guo H D, Shao Y. Detection of the Great Wall using SIR-C data in North-Western China [C]//Proceedings of IEEE International Geoscience and Remote Sensing,Remote Sensing-A Scientific Vision for Sustainable Development.Singapore:IEEE, 1997,1:50-52.
[31] Guo H D, Liu H, Wang X Y , et al. Subsurface old drainage detection and paleoenvironment analysis using spaceborne Radar images in Alxa Plateau[J]. Science in China Series D(Earth Sciences), 2000,43(4):439-448.
doi: 10.1007/BF02959455
[32] Mackenzie J S, Ringrose P S . Use of SEASAT SAR imagery for geological mapping in a volcanic terrain:Askja Caldera, Iceland[J]. International Journal of Remote Sensing, 1986,7(2):181-194.
doi: 10.1080/01431168608954675
[33] Dierking W, Haack H. L-band polarimetric SAR-signatures of lava flows in the Northern Volcanic Zone,Iceland [C]//IEEE International Geoscience and Remote Sensing Symposium Proceedings.Seattle,WA,USA:IEEE, 1998,3:1339-1341.
[34] Murino P, Ferri M, Castellano L, et al. Using SIR-C/X-SAR data in the analysis of volcanic and sedimentary areas.The Campania test site (Southern Italy) [C]//Proceedings of International Geoscience and Remote Sensing Symposium,Quantitative Remote Sensing for Science and Applications.Firenze,Italy:IEEE, 1995,2:1069-1071.
[35] Guo H D, Liao J J, Wang C L , et al. Use of multifrequency,multipolarization shuttle imaging Radar for volcano mapping in the Kunlun Mountains of Western China[J]. Remote Sensing of Environment, 1997,59(2):364-374.
doi: 10.1016/S0034-4257(96)00175-7
[36] Dall J, Madsen S N, Brooks C K, et al. Geologic mapping in Greenland with polarimetric SAR [C]//Proceedings of International Geoscience and Remote Sensing Symposium,Quantitative Remote Sensing for Science and Applications.Firenze,Italy:IEEE, 1995,3:2206-2208.
[37] 倪卓娅 . 基于SAR影像的岩性分类及其在地质上的应用研究[D].北京:中国地质大学(北京), 2012.
Ni Z Y . Research on Lithological Classification Using SAR Image and Its Application on Geology[D].Beijing: China University of Geosciences(Beijing), 2012.
[38] Lee T H, Moon W M. Lineament extraction from Landsat TM,JERS-1 SAR,and DEM for geological applications [C]//IEEE International Geoscience and Remote Sensing Symposium.Toronto,Ontario,Canada:IEEE, 2002,6:3276-3278.
[39] Kageyama Y, Nishida M, Oi T. Analysis of the segments extracted by automated lineament detection [C]//IEEE International Geoscience and Remote Sensing Symposium.Honolulu,HI:IEEE, 2000,1:289-291.
[40] Abdelsalam M G, Stern R J . Mapping Precambrian structures in the Sahara Desert with SIR-C/X-SAR Radar:The Neoproterozoic Keraf Suture,NE Sudan[J]. Journal of Geophysical Research, 1996,101(E10):23063-23076.
doi: 10.1029/96JE01391
[41] Guo H D, Zhu L P, Shao Y , et al. Detection of structural and lithological features underneath a vegetation canopy using SIR-C/X-SAR data in Zhao Qing test site of southern China[J]. Journal of Geophysical Research, 1996,101(E10):23101-23108.
doi: 10.1029/96JE01974
[42] 代晶晶 . PALSAR及RADARSAT2全极化雷达数据在地质构造应用中的研究[J]. 地质与勘探, 2011,47(4):719-725.
Dai J J . Application of PALSAR and RADARSAT2 quad-polar data to study of geological structure[J]. Geology and Exploration, 2011,47(4):719-725.
[43] 张满郎, 郑兰芬 . Landsat TM及JERS-1 SAR数据在金矿探测中的应用研究[J]. 环境遥感, 1996,11(4):260-266.
doi: 10.1007/BF02951625
Zhang M L, Zheng L F . Application of Landsat TM and JERS-1 SAR data to gold exploration[J]. Remote Sensing of Environment China, 1996,11(4):260-266.
[44] Pour A B, Hashim M . Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak,Malaysia[J]. Advances in Space Research, 2014,54(4):644-654.
doi: 10.1016/j.asr.2014.02.012
[45] Kusky T M, Ramadan T M . Structural controls on Neoproterozoic mineralization in the South Eastern Desert,Egypt:An integrated field,Landsat TM,and SIR-C/X SAR approach[J]. Journal of African Earth Sciences, 2002,35(1):107-121.
doi: 10.1016/S0899-5362(02)00029-5
[46] 翁永玲, 田庆久 . 遥感数据融合方法分析与评价综述[J].遥感信息, 2003(3):49-54.
doi: 10.3969/j.issn.1000-3177.2003.03.015
Weng Y L, Tian Q J . Analysis and evaluation of method on remote sensing data fusion[J].Remote Sensing Information, 2003(3):49-54.
[47] 陈彩芬, 舒宁 . SAR影像与TM影像的几种融合处理方法[J]. 国土资源遥感, 1999,11(4):53-57.doi: 10.6046/gtzyyg.1999.04.10.
doi: 10.3969/j.issn.1001-070X.1999.04.010
Chen C F, Shu N . The fusion approaches for SAR and TM images[J]. Remote Sensing for Land and Resources, 1999,11(4):53-57.doi: 10.6046/gtzyyg.1999.04.10.
[48] Wever T, Frei M. Integration of SIR-C/X-SAR and Landsat TM data for geologic mapping and resource exploration [C]//International Geoscience and Remote Sensing Symposium,Remote Sensing for a Sustainable Future.Lincoln,NE,USA:IEEE, 1996,3:1833-1835.
[49] 颜蕊 . 沉积岩区雷达遥感成矿信息提取方法及应用研究[D]. 青岛:山东科技大学, 2006.
Yan R . Research about the Way of SAR Images for Metallogenic Information Extraction in Sedimentary Petrologic Area and Its Application[D]. Qingdao: Shandong University of Science and Technology, 2006.
[50] Paradella W R, Bignelli P A, Veneziani P , et al. Airborne and spaceborne synthetic aperture Radar (SAR) integration with Landsat TM and gamma ray spectrometry for geological mapping in a tropical rainforest environment,the Carajás Mineral Province,Brazil[J]. International Journal of Remote Sensing, 1997,18(7):1483-1501.
doi: 10.1080/014311697218232
[51] Teruiya R K, Paradella W R, Dos Santos A R ,et al.Integrating airborne SAR,Landsat TM and airborne geophysics data for improving geological mapping in the Amazon Region:The Cigano Granite,Carajás Province,Brazil[J]. International Journal of Remote Sensing, 2008,29(13):3957-3974.
doi: 10.1080/01431160801891838
[52] Thurmond A K, Abdelsalam M G, Thurmond J B . Optical-Radar-DEM remote sensing data integration for geological mapping in the Afar Depression,Ethiopia[J]. Journal of African Earth Sciences, 2006,44(2):119-134.
doi: 10.1016/j.jafrearsci.2005.10.006
[53] 杨显华, 黄洁, 田立 , 等. 四川省矿山遥感监测主要成果与进展[J].中国地质调查,2016, 3(5):41-47.
Yang X H, Huang J, Tian L , et al. Major achievements and progress of remote sensing monitoring mines in Sichuan Province[J]. Geological Survey of China, 2016,3(5):41-47.
[1] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[2] 江珊, 王春, 宋宏利, 刘玉锋. 基于SAR与光学遥感数据相结合的农作物种植类型识别研究[J]. 国土资源遥感, 2020, 32(4): 105-110.
[3] 周光宇, 刘邦权, 张亶. 基于变分模态分解的SAR图像目标识别方法[J]. 国土资源遥感, 2020, 32(2): 33-39.
[4] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[5] 王念秦, 乔德京, 符喜优. 滤波参数对Goldstein干涉相位图滤波性能的影响分析[J]. 国土资源遥感, 2019, 31(1): 117-124.
[6] 刘紫涵, 吴艳兰. 遥感图像云检测方法研究进展[J]. 国土资源遥感, 2017, 29(4): 6-7.
[7] 许斌. 基于非高斯分布的全极化SAR数据无监督分类[J]. 国土资源遥感, 2017, 29(2): 90-96.
[8] 刘斌, 葛大庆, 李曼, 张玲, 王艳, 郭小方, 张晓博. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1-6.
[9] 祁帅, 张永红, 汪慧琴. 林火干扰区全极化SAR影像的散射特性分析[J]. 国土资源遥感, 2016, 28(2): 48-53.
[10] 卞小林, 邵芸, 张风丽, 符喜优. 典型地物微波特性知识库的设计与实现[J]. 国土资源遥感, 2015, 27(4): 189-194.
[11] 刘惠颖, 郭华东, 张露. 基于HJ-1CSAR数据的辽东湾海冰分类[J]. 国土资源遥感, 2014, 26(3): 125-129.
[12] 王晓华, 邓喀中, 杨化超. 集成互补不变特征的SAR影像自动配准[J]. 国土资源遥感, 2014, 26(1): 52-56.
[13] 张冬华, 张春华, 刘芮, 姜焱光. 基于Mini-RF雷达数据的月球水冰探测[J]. 国土资源遥感, 2014, 26(1): 110-114.
[14] 权文婷, 王钊. 冬小麦种植面积遥感提取方法研究[J]. 国土资源遥感, 2013, 25(4): 8-15.
[15] 巩彪, 黄韦艮, 陈鹏. 基于改进的归一化Hough变换的ASAR图像船只尾迹检测[J]. 国土资源遥感, 2012, 24(3): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发