Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (2): 114-124    DOI: 10.6046/gtzyyg.2018.02.16
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
联合双边滤波器和小波阈值收缩去噪算法研究
刘尚旺1,2(), 郜刘阳1,2, 王博1,2
1. 河南师范大学计算机与信息工程学院,新乡 453007
2.“智慧商务与物联网技术”河南省工程实验室,新乡 453007;
Research on image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage
Shangwang LIU1,2(), Liuyang GAO1,2, Bo WANG1,2
1.College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
2.Engineering Lab of Intelligence Business and Internet of Things, Xinxiang 453007, China
全文: PDF(10300 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对现有去噪算法去噪不彻底、噪声误判、损害图像边缘和纹理细节信息的缺点,提出一种联合双边滤波器和小波阈值收缩图像去噪算法。首先,使用双边滤波器对含有噪声图像进行分层; 其次,对不同分层结果,选择不同滤波器进行去噪: 高对比度层采用双边滤波器,低对比度层采用小波阈值收缩去噪方法; 最后,融合高、低对比度层去噪图像,实现有效去除噪声的同时,保证图像信息完整。实验结果表明,本文算法的峰值信噪比达到40.99 dB,比非局部均值滤波、双边滤波器、小波阈值收缩和偏微分方程图像去噪算法分别提高了7.79%,3.56%,11.22%和1.91%; 与此同时,还能有效保留图像边缘和纹理等细节信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘尚旺
郜刘阳
王博
关键词 双边滤波器小波阈值收缩峰值信噪比图像边缘纹理    
Abstract Aim

ing at overcoming the shortcomings of existing denoising algorithms, such as the poor denoising capability, the noise error evaluation, and the damaging of the image edge and texture details, this paper proposes an image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage. Firstly, the original noise image is divided into high-contrast and low-contrast layers by bilateral filter. Secondly, different appropriate filters are employed for different hierarchical layers. i.e., the bilateral filter and wavelet threshold shrinkage are adopted for high-contrast and low-contrast layers, respectively. Finally, the final denoising image is obtained by integrating high-contrast with low-contrast layers’ denoising images, which suppresses noises and at the same time enhances the image more efficiently. Experimental results show that peak signal to noise ratio (PSNR) of this method reaches 40.99 dB, which is higher than the ratio of non-local means filter, bilateral filter, wavelet threshold shrinkage and partial differential equation algorithms by 7.79%, 3.56%, 11.22% and 1.91%, respectively. Moreover, the proposed algorithm can not only remove the noises efficiently but also preserve the image edge and texture details very well.

Key wordsbilateral filter    wavelet threshold shrinkage    peak signal to noise ratio    image edge    texture
收稿日期: 2016-11-07      出版日期: 2018-05-30
:  TP79  
基金资助:国家自然科学基金项目“生物可信性频域视觉注意模型及其图像多语义快速获取方法研究”(编号: U1304607);河南省高等学校重点项目“物联网感知中语义图像分割研究”(编号: 15A520080);河南师范大学博士科研启动基金资助项目“可硬件实现、实时和语义获取的视觉注意模型研究”(编号: qd12138)
引用本文:   
刘尚旺, 郜刘阳, 王博. 联合双边滤波器和小波阈值收缩去噪算法研究[J]. 国土资源遥感, 2018, 30(2): 114-124.
Shangwang LIU, Liuyang GAO, Bo WANG. Research on image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage. Remote Sensing for Land & Resources, 2018, 30(2): 114-124.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.02.16      或      https://www.gtzyyg.com/CN/Y2018/V30/I2/114
Fig.1  本文算法流程
Fig.2  BF算法去噪效果
Fig.3  小波阈值收缩方法去噪效果
Fig.4  5种算法去噪结果
Fig.5  5种算法去噪后边缘检测
Fig.6  5种去噪算法去噪后灰度直方图
算法 图像编号 高斯噪声密度 平均值
0.005 0.010 0.015 0.200
NLM 30.03 29.72 29.24 28.71 29.43
28.35 28.07 27.78 27.32 27.88
28.28 28.00 27.73 27.31 27.83
28.93 28.67 28.29 27.81 28.43
29.34 29.01 28.53 28.05 28.73
27.53 27.28 26.96 26.63 27.05
BF 42.06 40.75 39.42 37.81 40.01
39.16 38.27 37.36 37.02 37.95
33.11 32.00 31.47 28.93 31.34
37.77 36.35 35.02 33.14 35.57
36.27 35.81 33.32 32.23 34.41
34.39 33.12 32.25 30.01 32.44
小波阈值收缩 20.60 18.42 16.99 15.29 17.83
20.13 18.52 16.68 16.01 17.84
24.07 23.15 22.46 21.82 22.88
27.69 25.87 24.60 23.68 25.46
28.57 26.47 25.10 23.67 25.67
27.43 25.72 24.57 23.66 25.34
PDE 41.84 39.53 38.04 36.96 39.10
40.74 38.12 36.42 35.33 37.65
40.35 37.35 35.32 33.78 36.70
40.96 38.31 36.66 35.45 37.85
40.95 38.44 36.92 35.87 38.05
41.00 38.29 36.46 35.13 37.72
本文算法 46.56 41.76 39.63 38.36 41.58
46.31 41.13 38.51 37.88 40.96
45.95 40.86 38.69 37.16 40.67
46.13 41.23 39.16 37.18 40.93
46.01 41.18 39.03 37.56 40.95
46.60 41.59 38.97 36.24 40.85
Tab.1  不同等级高斯噪声下各种算法的PSNR值
算法 图像编号 椒盐噪声密度 平均值
0.1 0.2 0.3 0.4
NLM 28.63 27.94 27.63 26.82 27.76
26.72 25.58 24.62 23.45 25.09
26.53 25.43 24.54 23.21 24.93
26.85 25.71 24.81 23.62 25.25
25.48 24.68 23.43 22.89 24.12
25.64 24.20 22.85 22.03 23.68
BF 40.17 38.72 37.53 36.80 38.31
37.28 36.67 35.73 34.21 35.97
31.34 29.47 28.64 27.32 29.19
35.73 33.63 32.71 33.43 33.88
33.58 31.57 30.46 29.38 31.25
29.97 27.51 26.37 25.26 27.28
小波阈值收缩 18.79 16.54 14.71 13.23 15.82
18.34 16.63 14.68 13.82 15.87
22.47 21.26 20.51 19.32 20.89
25.51 24.27 23.65 22.07 23.88
26.37 24.50 23.33 22.72 24.23
25.18 23.62 22.41 21.55 23.19
PDE 39.79 37.62 36.37 35.28 37.27
38.67 36.37 35.40 34.39 36.21
38.21 35.33 34.58 33.42 35.39
38.72 36.51 35.49 34.41 36.28
38.84 36.63 35.38 34.32 36.29
39.20 36.47 35.35 34.20 36.31
本文算法 45.42 42.65 40.07 38.83 41.74
45.17 42.21 38.97 37.60 40.99
44.82 41.76 38.42 37.00 40.50
45.03 41.59 40.01 38.21 41.21
44.96 40.52 39.21 37.82 40.63
45.00 40.63 38.87 36.97 40.37
Tab.2  不同椒盐噪声密度下各种算法的PSNR值
Fig.7  各去噪算法去噪后的结果图像
指标 算法 高斯噪声密度
0.2 0.4 0.6 0.8 1.0
PSNR NLM 18.24 17.05 16.04 15.37 13.72
BF 22.47 21.36 20.31 19.44 17.51
小波阈值收缩 15.56 14.21 13.54 12.83 10.94
PDE 23.60 22.13 21.33 20.04 18.45
本文算法 26.17 25.84 24.25 23.05 21.57
EPI NLM 0.246 0.217 0.206 0.191 0.178
BF 0.394 0.374 0.362 0.351 0.337
小波阈值收缩 0.187 0.173 0.164 0.152 0.141
PDE 0.422 0.408 0.391 0.375 0.340
本文算法 0.541 0.524 0.510 0.499 0.476
Tab.3  不同等级高斯噪声下各种算法的PSNR与EPI值
指标 算法 椒盐噪声密度
0.1 0.3 0.5 0.7 0.9
PSNR NLM 16.37 15.28 14.73 12.38 11.57
BF 20.35 19.47 18.38 17.56 16.39
小波阈值收缩 13.64 12.72 11.53 10.20 9.48
PDE 21.46 20.52 19.37 18.04 17.21
本文算法 24.58 22.88 22.34 21.54 20.37
EPI NLM 0.234 0.205 0.194 0.187 0.172
BF 0.383 0.372 0.360 0.345 0.321
小波阈值收缩 0.172 0.158 0.146 0.135 0.120
PDE 0.413 0.392 0.381 0.365 0.334
本文算法 0.531 0.517 0.502 0.489 0.473
Tab.4  不同椒盐噪声密度下各种算法的PSNR与EPI值
[1] Knaus C, Zwicker M. Dual-domain image denoising [C]//Proceedings of 20th IEEE International Conference on Image Processing.Melbourne:IEEE, 2013: 440-444.
[2] 张倩 . 基于双重离散小波变换的遥感图像去噪算法[J]. 国土资源遥感, 2015,27(4):14-20.doi: 10.6046/gtzyyg.2015.04.03.
doi: 10.6046/gtzyyg.2015.04.03
Zhang Q . Remote sensing image de-noising algorithm based on double discrete wavelet transform[J]. Remote Sensing for Land and Resources, 2015,27(4):14-20.doi: 10.6046/gtzyyg.2015.04.03.
[3] Huang Q G, Hao B Y, Chang S . Adaptive digital ridgelet transform and its application in image denoising[J]. Digital Signal Processing, 2016,52:45-54.
doi: 10.1016/j.dsp.2016.02.004
[4] Buades A, Coll B, Morel J M .A non-local algorithm for image denoising[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE, 2005: 60-65.
[5] 谭茹, 李婷婷, 李伟伟 , 等. 图像去噪的自适应非局部均值滤波方法[J]. 小型微型计算机系统, 2014,35(1):137-141.
doi: 10.3969/j.issn.1000-1220.2014.01.028
Tan R, Li T T, Li W W , et al. Adaptive non-local means filtering method for image denoising[J]. Journal of Chinese Computer Systems, 2014,35(1):137-141.
[6] 黄智, 付兴武, 刘万军 . 混合相似性权重的非局部均值去噪算法[J]. 计算机应用, 2016,36(2):556-562.
doi: 10.11772/j.issn.1001-9081.2016.02.0556
Huang Z, Fu X W, Liu W J . Non-local means denoising algorithm with hybrid similarity weight[J]. Journal of Computer Applications, 2016,36(2):556-562.
[7] 周兵, 韩媛媛, 徐明亮 , 等. 快速非局部均值图像去噪算法[J]. 计算机辅助设计与图形学学报, 2016,28(8):1260-1268.
Zhou B, Han Y Y, Xu M L , et al. A fast non-local means image denoising algorithm[J]. Journal of Computer-Aided Design and Computer Graphics, 2016,28(8):1260-1268.
[8] Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proceedings of the 6th International Conference on Computer Vision. Bombay:IEEE, 2010: 839-846.
[9] 杨学志, 徐勇, 方静 , 等. 结合区域分割和双边滤波的图像去噪新算法[J]. 中国图象图形学报, 2012,17(1):40-48.
doi: 10.11834/jig.20120106
Yang X Z, Xu Y, Fang J , et al. New filter based on region segmentation and bilateral filtering[J]. Journal of Image and Graphics, 2012,17(1):40-48.
[10] Ramesh S.An efficient approach for removal of universal noise using adaptive based switching bilateral filter[C]//Proceedings of 2012 International Conference on Advances in Engineering,Science and Management.Nagapattinam:IEEE, 2012: 462-467.
[11] 袁华, 庞建铿, 莫建文 . 基于噪声分类的双边滤波点云去噪算法[J]. 计算机应用, 2015,35(8):2305-2310.
doi: 10.11772/j.issn.1001-9081.2015.08.2305
Yuan H, Pang J K, Mo J W . Denoising algorithm for bilateral filtered point cloud based on noise classification[J]. Journal of Computer Applications, 2015,35(8):2305-2310.
[12] 杨燕 . 基于变分偏微分方程的图像去噪及其快速算法[D]. 南京:南京邮电大学, 2015.
Yang Y . Image Denoising Based on Calculus of Variations and Partial Differential Equations,and Its Fast Algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015.
[13] Halim S A, Ibrahim A, Sulong T N N T,et al.Fourth-order partial differential equation noise removal on welding images[J]. AIP Conference Proceedings, 2015,1682(1):020050.
doi: 10.1063/1.4932459
[14] 芦碧波, 李阳, 王永茂 . 结合松弛中值滤波的高阶彩色图像迭代去噪算法[J]. 应用光学, 2016,37(3):366-371.
Lu B B, Li Y, Wang Y M . Color image denoising using high order iterating model by combining relaxed median filter[J]. Journal of Applied Optics, 2016,37(3):366-371.
[15] Donoho D L, Johnstone I M . Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81(3):425-455.
doi: 10.1093/biomet/81.3.425
[16] 王蓓, 张根耀, 李智 , 等. 基于新阈值函数的小波阈值去噪算法[J]. 计算机应用, 2014,34(5):1499-1502.
doi: 10.11772/j.issn.1001-9081.2014.05.1499
Wang B, Zhang G Y, Li Z , et al. Wavelet threshold denoising algorithm based on new threshold function[J]. Journal of Computer Applications, 2014,34(5):1499-1502.
[17] Zhao R M, Cui H M. Improved threshold denoising method based on wavelet transform [C]//Proceedings of the 7th International Conference on Modelling,Identification and Control.Sousse:IEEE, 2015: 1-4.
[18] 胡然, 郭成城, 杨剑锋 . 基于小波阈值和主成分分析的视频去噪算法[J]. 计算机科学, 2016,43(4):290-293.
doi: 10.11896/j.issn.1002-137X.2016.4.059
Hu R, Guo C C, Yang J F . Video denoising algorithm based on wavelet threshold and PCA[J]. Computer Science, 2016,43(4):290-293.
[19] Zhang S, Jing H J.Fast log-gabor-based nonlocal means image denoising methods[C]//Proceedings of 2014 IEEE International Conference on Image Processing.Paris:IEEE, 2014: 2724-2728.
[20] 魏宁, 杨元琴, 董方敏 , 等. 多模图像交叉双域滤波算法[J]. 中国图象图形学报, 2016,21(6):691-697.
doi: 10.11834/jig.20160602
Wei N, Yang Y Q, Dong F M , et al. Cross dual-domain filter for denoising multi-mode images[J]. Journal of Image and Graphics, 2016,21(6):691-697.
[21] Lexin A, Nadler B, Durand F, et al. Patch complexity,finite pixel correlations and optimal denoising [C]//Proceedings of the 12th European Conference on Computer Vision.Florence:Springer, 2012: 73-86.
[22] Chen Q, Montesinos P, Sun Q S , et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010,28(3):298-306.
doi: 10.1016/j.imavis.2009.04.012
[23] Liu J, Wang Y H, Su K J , et al. Image denoising with multidirectional shrinkage in directionlet domain[J]. Signal Processing, 2016,125:64-78.
doi: 10.1016/j.sigpro.2016.01.013
[24] 张凡 . 基于改进NAS-RIF算法的遥感噪声图像自适应复原[J]. 国土资源遥感, 2015,27(2):105-111.doi: 10.6046/gtzyyg.2015.02.17.
doi: 10.6046/gtzyyg.2015.02.17
Zhang F . Self-adaptive restoration for remote sensing noise images based on improved NAS-RIF algorithm[J]. Remote Sensing for Land and Resources, 2015,27(2):105-111.doi: 10.6046/gtzyyg.2015.02.17.
[25] 吴一全, 吴超 . 结合NSCT和KPCA的高光谱遥感图像去噪[J]. 遥感学报, 2012,16(3):533-544.
doi: 10.11834/jrs.20121018
Wu Y Q, Wu C . Denoising of hyperspectral remote sensing images using NSCT and KPCA[J]. Journal of Remote Sensing, 2012,16(3):533-544.
[1] 臧丽日, 杨树文, 申顺发, 薛庆, 秦肖伟. 耦合分水岭与形态学的特殊纹理影像配准算法[J]. 自然资源遥感, 2022, 34(1): 76-84.
[2] 郭晓征, 姚云军, 贾坤, 张晓通, 赵祥. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4): 130-135.
[3] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[4] 王镕, 赵红莉, 蒋云钟, 何毅, 段浩. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析[J]. 自然资源遥感, 2021, 33(3): 72-79.
[5] 高凯旋, 焦海明, 王新闯. 融合影像纹理、光谱与地形特征的森林冠顶高反演模型[J]. 国土资源遥感, 2020, 32(3): 63-70.
[6] 黄惠, 郑雄伟, 孙根云, 郝艳玲, 张爱竹, 容俊, 马红章. 基于引力自组织神经网络的震害遥感影像分类[J]. 国土资源遥感, 2019, 31(3): 95-103.
[7] 杨军, 裴剑杰. 一种改进的ICM遥感影像分割算法[J]. 国土资源遥感, 2018, 30(3): 18-25.
[8] 闫利, 龚珣, 谢洪. 相位相关辅助的重复纹理区域特征跟踪匹配[J]. 国土资源遥感, 2018, 30(1): 1-6.
[9] 马国锐, 马艳丽, 江满珍. 结合颜色直方图和LBP纹理的遥感影像分割[J]. 国土资源遥感, 2017, 29(3): 32-40.
[10] 王玉, 付梅臣, 王力, 王长耀. 基于多源高分卫星影像的果棉套种信息提取[J]. 国土资源遥感, 2017, 29(2): 152-159.
[11] 苏腾飞, 张圣微, 李洪玉. 基于纹理特征与区域生长的高分辨率遥感影像分割算法[J]. 国土资源遥感, 2017, 29(2): 72-81.
[12] 滑永春, 李增元, 高志海, 郭中. 基于GF-2民勤县白刺包提取技术[J]. 国土资源遥感, 2017, 29(1): 71-77.
[13] 胡华龙, 薛武, 秦志远. 基于小波纹理和基元合并的高分影像居民地提取[J]. 国土资源遥感, 2017, 29(1): 21-28.
[14] 张恩兵, 秦昆, 岳梦雪, 张晔, 曾诚. 基于变差函数和格网划分的居民区特征描述与提取[J]. 国土资源遥感, 2016, 28(4): 149-155.
[15] 项盛文, 文贡坚, 高峰. 知识驱动下的飞机目标变化检测方法[J]. 国土资源遥感, 2016, 28(4): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发