Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (2): 154-161    DOI: 10.6046/gtzyyg.2018.02.21
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
青藏高原西部湖泊与构造背景关系遥感研究
刘刚(), 燕云鹏, 刘建宇
中国国土资源航空物探遥感中心,北京 100083
Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing
Gang LIU(), Yunpeng YAN, Jianyu LIU
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
全文: PDF(5946 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用遥感技术对青藏高原腹地湖泊的大小、形态、数量和空间分布进行了研究,发现大部分湖泊受张性断裂控制。湖泊的形态及空间分布具有非常强的规律性,且与GPS测量数据吻合,反映了区域应力场的现状。不同应力条件下,湖泊的形态和空间分布具有地域性,这种规律体现了各个区域构造背景的差异。青藏高原中部岩石圈物质向 SE 方向大规模逃逸是大量断陷湖泊形成的重要原因。湖泊分布规律是高原区域构造研究的一个窗口,对地下水的勘查具有一定的指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘刚
燕云鹏
刘建宇
关键词 青藏高原遥感湖泊分布地下水勘查    
Abstract

It appears that most lakes are controlled by tension faults, as shown by the study of the shapes,size,numbers and distribution of lakes in the hinterland of the Tibetan Plateau using remote sensing. The shapes and distribution of lakes have visible regularity and are in accordance with measurement data of GPS which reflect the conditions of regional stress field. The territorial characteristics of lakes on patterns and distribution in different stress fields constitute an embodiment of different tectonic backgrounds. The fact that the lithosphere matters in middle Tibetain Plateau escaped southeastward might have been an important factor for the formation of a large number of rift lakes. The distribution regularity of lakes is a window to research on tectonics of the Tibetan Plateau, and can be used to supervise the prospecting for groundwater.

Key wordsTibetan Plateau    remote sensing    lakes    distribution    prospecting for groundwater
收稿日期: 2016-12-09      出版日期: 2018-05-30
:  TP79  
基金资助:中国地质调查局地质调查项目“西北边境明铁盖地区基础地质遥感解译”(编号: DD2016007602)
引用本文:   
刘刚, 燕云鹏, 刘建宇. 青藏高原西部湖泊与构造背景关系遥感研究[J]. 国土资源遥感, 2018, 30(2): 154-161.
Gang LIU, Yunpeng YAN, Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.02.21      或      https://www.gtzyyg.com/CN/Y2018/V30/I2/154
Fig.1  青藏高原整体固定框架下的高原内部水平形变速度场(修改自甘卫军等[23])
F1: 阿尔金—康西瓦断裂; F2: 海原断裂; F3: 东昆仑断裂; F4: 玉树—鲜水河断裂; F5: 日土—嘉黎断裂; F6: 喀喇昆仑—雅鲁藏布断裂
Fig.2  青藏高原西部湖盆分类及分布示意图
Ⅰ: 北部左行拉分湖盆区; Ⅱ: 南部右行拉分湖盆区; Ⅲ: 东部断陷湖盆区; Ⅳ: 中部断-凹陷湖盆区;F1: 阿尔金—康西瓦断裂; F2: 东昆仑断裂; F3: 玉树—鲜水河断裂; F4: 日土—嘉黎断裂; F5: 喀喇昆仑—雅鲁藏布断裂
Fig.3  走滑断裂系形成的S型和Z型拉分盆地模式
Fig.4  左行走滑断裂系形成的雁列式拉分湖泊、S型褶曲及菱形洼地
Fig.5  受剪切带控制的透镜状微型湖泊群
Fig.6  雅鲁藏布右行走滑断裂系形成的雁列式拉分湖泊
Fig.7  近SN向断陷湖盆影像
Fig.8  中部凹陷湖盆的谷歌地球影像
[1] 许志琴, 杨经绥, 戚学祥 , 等. 印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J]. 地质通报, 2006,25(1/2):1-14.
doi: 10.3969/j.issn.1671-2552.2006.01.003
Xu Z Q, Yang J S, Qi X X , et al. India-Asia collision:A further discussion of N-S- and E-W-trending detachments and the orogenic mechanism of the modern Himalayas[J]. Geological Bulletin of China, 2006,25(1/2):1-14.
[2] 王国灿, 张克信, 曹凯 , 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学, 2010,35(5):713-727.
Wang G C, Zhang K X, Cao K , et al. Expanding processes of the Qinghai-Tibet Plateau during Cenozoic:An insight from spatio-temporal difference of uplift[J]. Earth Science, 2010,35(5):713-727.
[3] 崔军文, 李朋武, 李莉 . 青藏高原的隆升:青藏高原的岩石圈结构和构造地貌[J]. 地质论评, 2001,47(2):157-163.
Cui J W, Li P W, Li L . Uplift of the Qinghai-Tibet Plateau:Tectonic geomorphology and lithospheric structure of the Qinghai-Tibet Plateau[J]. Geological Review, 2001,47(2):157-163.
[4] 徐祖丰, 刘细元, 罗小川 , 等. 青藏高原冈底斯当穹错—许如错一带新近纪—第四纪地堑的基本特征[J]. 地质通报, 2016,25(7):822-826.
Xu Z F, Liu X Y, Luo X C , et al. Basic characteristic of the Neogene-Quaternary graben in the Tangqung Co Xuru Co area, Gangdise,Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2016,25(7):822-826.
[5] 朱大岗, 孟宪刚, 邵兆刚 , 等. 青藏高原古近纪—新近纪古湖泊的特征及分布[J]. 地质通报, 2006,25(1/2):34-42.
doi: 10.3969/j.issn.1671-2552.2006.01.007
Zhu D G, Meng X G, Shao Z G , et al. Characteristics and distribution of Paleogene-Neogene paleolakes on the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2006,25(1/2):34-42.
[6] 李炳元, 张青松, 王富葆 . 喀喇昆仑山—西昆仑山地区湖泊演化[J]. 第四纪研究, 1991,11(1):64-71.
Li B Y, Zhang Q S, Wang F B . Evolution of the lakes in the Karakorum-West Kunlun Mountains[J]. Quaternary Sciences, 1991,11(1):64-71.
[7] 李炳元, 王苏民, 朱立平 , 等. 12 kaBP前后青藏高原湖泊环境[J]. 中国科学( D辑), 2001,31(s1):258-263.
Li B Y, Wang S M, Zhu L P , et al. 12 kaBP lake environment on the Tibetan Plateau[J]. Science in China Series D(Earth Sciences), 2001,44(s1):324-331.
[8] 闫立娟, 郑绵平, 魏乐军 . 近40年来青藏高原湖泊变迁及其对气候变化的响应[J]. 地学前缘, 2016,23(4):310-323.
doi: 10.13745/j.esf.2016.04.027
Yan L J, Zheng M P, Wei L J . Change of the lakes in Tibetan Plateau and its response to climate in the past forty years[J]. Earth Science Frontiers, 2016,23(4):310-323.
[9] 朱大岗, 孟宪刚, 赵希涛 , 等. 西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁[J]. 中国地质, 2004,31(3):269-277.
doi: 10.3969/j.issn.1000-3657.2004.03.005
Zhu D G, Meng X G, Zhao X T , et al. Evolution and climatic change of Nam Co of Tibet and an ancient large lake in the northern Tibetan Plateau since the late Pleistocene[J]. Geology in China, 2004,31(3):269-277.
[10] 许志琴, 杨经绥, 李海兵 , 等. 印度—亚洲碰撞大地构造[J]. 地质学报, 2011,85(1):1-33.
Xu Z Q, Yang J S, Li H B , et al. On the tectonics of the India-Asia collision[J]. Acta Geologica Sinica, 2011,85(1):1-33.
[11] 许志琴, 李海兵, 杨经绥 . 造山的高原——青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 2006,13(4):1-17.
doi: 10.3321/j.issn:1005-2321.2006.04.002
Xu Z Q, Li H B, Yang J S . An orogenic plateau:The orogenic collage and orogenic types of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 2006,13(4):1-17.
[12] 张培震, 张会平, 郑文俊 , 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014,36(3):574-585.
Zhang P Z, Zhang H P, Zheng W J , et al. Cenozoic tectonic evolution of continental eastern Asia[J]. Seismology and Geology, 2014,36(3):574-585.
[13] 彭小龙, 王道永 . 雅鲁藏布江断裂带活动构造特征与活动性分析[J]. 长江大学学报(自然科学版), 2013,10(26):41-44.
Peng X L, Wang D Y . The active structural characteristics and activity analysis of Yarlungzangbo fracture zone[J]. Journal of Yangtze University(Natural Science Edition), 2013,10(26):41-44.
[14] 武长得, 朱红, 邓宗策 , 等. 雅鲁藏布江断裂带的构造特征[J]. 中国地质科学院院报, 1990,21(s1):87-94.
Wu C D, Zhu H, Deng Z C , et al. The structural characteristics of Yarlungzangbo fracture zone[J]. Bulletin of the Chinese Academy of Geological Sciences, 1990,21(s1):87-94.
[15] 李海兵, Valli F, 许志琴,等.喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 2006,33(2):239-255.
doi: 10.3969/j.issn.1000-3657.2006.02.002
Li H B, Valli F, Xu Z Q , et al. Deformation and tectonic evolution of the Karakorum fault,western Tibet[J]. Geology in China, 2006,33(2):239-255.
[16] 刘刚, 李述靖, 赵福岳 , 等. 阿尔金—康西瓦剪切-推覆系统和帕米尔推覆构造的遥感解析[J]. 地球学报, 2006,27(1):25-29.
doi: 10.3321/j.issn:1006-3021.2006.01.003
Liu G, Li S J, Zhao F Y , et al. A remote sensing analysis of Altun-Kangxiwa shear-thrust system and Pamir nappe structure[J]. Acta Geoscientica Sinica, 2006,27(1):25-29.
[17] 胡旭莉, 陈文 . 东昆仑西段布喀达坂峰地区昆南断裂初步研究[J]. 青海大学学报(自然科学版), 2010,28(3):36-41.
doi: 10.3969/j.issn.1006-8996.2010.03.009
Hu X L, Chen W . Pilot study of Southern Kunlun fracture at Bukedaban area of the west part of east Kunlun[J]. Journal of Qinghai University(Nature Science), 2010,28(3):36-41.
[18] 李春峰, 贺群禄, 赵国光 . 东昆仑活动断裂带东段全新世滑动速率研究[J]. 地震地质, 2004,26(4):676-687.
doi: 10.3969/j.issn.0253-4967.2004.04.013
Li C F, He Q L, Zhao G G . Holocene slip rate along the eastern segment of the Kunlun fault[J]. Seismology and Geology, 2004,26(4):676-687.
[19] 许志琴, 李海兵, 唐哲民 , 等. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报, 2011,27(11):3157-3170.
Xu Z Q, Li H B, Tang Z M , et al. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J].Acta Petrologica Sinica, 27(11):3157-3170.
[20] 许志琴, 曾令森, 杨经绥 . 走滑断裂、“挤压性盆-山构造”与油气资源关系的探讨[J]. 地球科学, 2004,29(6):631-643.
doi: 10.3321/j.issn:1000-2383.2004.06.001
Xu Z Q, Zeng L S, Yang J S . Role of large-scale strike-slip faults in the formation of petroleum-bearing compressional basin-mountain range systems[J]. Earth Science, 2004,29(6):631-643.
[21] 弓小平, 马华东, 杨兴科 , 等. 木孜塔格—鲸鱼湖断裂带特征、演化及其意义[J]. 大地构造与成矿学, 2004,28(4):418-427.
doi: 10.3969/j.issn.1001-1552.2004.04.008
Gong X P, Ma H D, Yang X K , et al. Meaning and evolution and characteristic of Muztag-Cetacean Lake fracture zone[J]. Geotectonica et Metallogenia, 2004,28(4):418-427.
[22] 杨顺虎, 付碧宏, 时丕龙 . 东昆仑活动断裂带秀沟盆地段晚第四纪构造变形与地貌特征研究[J]. 第四纪研究, 2012,32(5):921-930.
Yang S H, Fu B H, Shi P L . Late Quaternary structural deformation and tectono-geomorphic features along the Xiugou Basin segment,eastern Kunlun fault zone[J]. Quaternary Sciences, 2012,32(5):921-930.
[23] 甘卫军, 沈正康, 张培震 , 等. 青藏高原地壳水平差异运动的GPS观测研究[J]. 大地测量与地球动力学, 2004,24(1):29-35.
Gan W P, Shen Z K, Zhang P Z , et al. Horizontal crustal movement of Tibetan Plateau from GPS measurements[J]. Journal of Geodesy and Geodynamics, 2004,24(1):29-35.
[24] 张培震, 沈正康, 王敏 , 等. 青藏高原及周边现今构造变形的运动学[J]. 地震地质, 2004,26(3):367-377.
doi: 10.3969/j.issn.0253-4967.2004.03.002
Zhang P Z, Shen Z K, Wang M , et al. Kinematics of present-day tectonic deformation of the Tibetan Plateau and its vicinities[J]. Seismology and Geology, 2004,26(3):367-377.
[25] Tapponnier P, Peltzer G, Le Dain A Y,et al.Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 1982,10(12):611-616.
doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
[26] England P, Houseman G . Finite strain calculations of continental deformation:2.Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research, 1986,91(B3):3664-3676.
doi: 10.1029/JB091iB03p03664
[27] 曹建玲, 石耀霖, 张怀 , 等. 青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J]. 科学通报, 2009,54(2):224-234.
Cao J L, Shi Y L, Zhang H , et al. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau[J]. Chinese Science Bulletin, 2009,54(8):1398-1410.
[28] 李小兵, 裴先治, 陈有炘 , 等. 东昆仑造山带东段哈图沟—清水泉—沟里韧性剪切带塑性变形及动力学条件研究[J]. 大地构造与成矿学, 2015,39(2):208-230.
Li X B, Pei X Z, Chen Y X , et al. Study on the plastic deformation and dynamic condition of Hatugou-Qingshuiquan-Gouli ductile shear zone in the eastern section of East Kunlun[J]. Geotectonica et Metallogenia, 2015,39(2):208-230.
[29] 张紫程, 张绪教, 高万里 , 等. 东昆仑左行走滑韧性剪切带形成时代的锆石U-Pb年龄证据[J]. 地质力学学报, 2010,16(1):51-58.
Zhang Z C, Zhang X J, Gao W L , et al. Evidence of zircon U-Pb ages for the formation time of the East Kunlun left-lateral ductile shear belt[J]. Journal of Geomechanics, 2010,16(1):51-58.
[30] 陈兆恩, 林秋雁 . 青藏高原湖泊涨缩的新构造运动意义[J].地震, 1993(1):31-40,52.
Chen Z E, Lin Q Y . Significance of neotectonic movement of lake extension and shrinkage in Qinghai-Tibet Plateau[J].Earthquake, 1993(1):31-40,52.
[31] 百度百科.拉分盆地[EB/OL].( 2016- 10- 07)[2016-11-06]..
Baidubaike.Pull-apart basin[EB/OL].( 2016- 10- 07)[2016-11-06]..
[32] 刘芳晓, 刘德民, 李德威 , 等. 青藏高原班公错的湖盆成因及构造演化[J]. 地球科学, 2013,38(4):745-754.
doi: 10.3799/dqkx.2013.072
Liu F X, Liu D M, Li D W , et al. Causes and tectonic evolution of Bangong Lake basin[J]. Earth Science, 2013,38(4):745-754.
[33] 王辉, 范玉海, 张少鹏 , 等. 运用高分遥感技术圈定西昆仑黑恰铁多金属矿化带[J].中国地质调查, 2016, 3(5):13-20.
Wang H, Fan Y H, Zhang S P , et al. Delineation of Heiqia iron polymetallic mineralization zone in West Kunlun region using high resolution remote sensing technology[J]. Geological Survey of China, 2016,3(5):13-20.
[34] 杨金中, 王海庆, 陈微 . 西昆仑成矿带高分辨率遥感调查主要进展与成果[J].中国地质调查,2016, 3(5):7-12.
Yang J Z, Wang H Q, Chen W . Main progress and achievements of high spacial resolution remote sensing survey on west Kunlun metallorgenic belt[J]. Geological Survey of China, 2016,3(5):7-12.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发