Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (2): 223-230    DOI: 10.6046/gtzyyg.2018.02.30
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
福州海绵城市建设中屋顶绿化的截水作用研究
林璐1(), 许章华1,2,3,4(), 黄旭影1, 吕福康5, 王前锋1,4, 林倩5
1.福州大学环境与资源学院,福州 350116
2.福州大学信息与通信工程博士后科研流动站,福州 350116
3.空间数据挖掘与信息共享教育部重点实验室,福州 350116
4.福州大学区域与城乡规划研究中心,福州 350116
5.福州大学至诚学院, 福州 350002
Study of water storage effect of roof greening in the construction of Fuzhou sponge city
Lu LIN1(), Zhanghua XU1,2,3,4(), Xuying HUANG1, Fukang LYU5, Qianfeng WANG1,4, Qian LIN5
1. College of Environment and Resources,Fuzhou University,Fuzhou 350116,China
2.Postdoctoral Research Station of Information and Communication Engineering, Fuzhou University, Fuzhou 350116, China
3. Key Lab of Spatial Data Mining and Information Sharing, Ministry of Education, Fuzhou 350116, China
4.Center for Region and Urban and Rural Planning,Fuzhou 350116,China
5.Zhicheng College,Fuzhou University,Fuzhou 350002,China
全文: PDF(2911 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

城市屋顶绿化具有截留水分、改善生态环境等作用,可作为海绵城市建设的重要内容。以福州市的鼓楼、台江和仓山3区为研究对象,选取Landsat8 OLI遥感影像为主要数据,基于连续最大角凸锥(sequential maximum angle convex cone,SMACC)方法提取屋顶绿化率,建立其与全局植被湿度指数(global vegetation moisture index,GVMI)的关系模型,并对屋顶绿化率进行模拟与分析。结果显示,福州市3区屋顶绿化率总体较低,平均值仅17.34%,绿化率为10%~20%的比例为66.55%,而绿化率高于50%的仅占5.11%; 绿化率不同,湿度亦有变化,表明屋顶植被具备不可忽视的截水能力。通过构建屋顶湿度h与绿化率r的关系模型发现二次曲线模型拟合优度最佳; 当屋顶绿化率高于16.30%时,截水效果开始明显; 而在绿化率从30%升至60%过程中,截水能力提高速率最快,平均可达57.9%。选取2个典型小区对屋顶绿化率进行模拟分析,进一步证明该模型的合理性。研究成果证实了屋顶绿化的截水功能,并确定了截水目标下的屋顶绿化率阈值,可为海绵城市建设提供重要参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林璐
许章华
黄旭影
吕福康
王前锋
林倩
关键词 海绵城市屋顶绿化率湿度全局植被湿度指数(GVMI)模拟福州市    
Abstract

The urban roof greening has the effects such as water interception and ecological environment improvement, and can be an important part of sponge city construction. Taking Gulou, Taijiang, Cangshan Districts of Fuzhou City as the study objects and the remote sensing image of Landsat8 OLI as the main data, the authors extracted the roof greening rate based on sequential maximum angle convex cone(SMACC), constructed the relational models of roof greening rate and global vegetation moisture index(GVMI) humidity indicator, and then simulated and analyzed the roof greening rates. The results show that the roof greening rate in the three districts of Fuzhou is overall low, with an average of only 17.34%; the proportion of greening rate of 10%~20% is 66.55%, and only 5.11% is higher than 50%. The greening rates are different, and there are also changes in humidity, indicating that the roof vegetation has remarkable water interception capacity. The quadratic fumction model of roof humidity h and greening rate r is the optimization model. When the roof greening rate is higher than 16.30%, the intercepting effect begins to be obvious. In the process of greening rate increasing from 30% to 60%, the increasing speed of intercepting capacity becomes the fastest, with an average of up to 57.9%. Two typical blocks were selected and the roof greening rates were simulated and analyzed, which further proves the rationality of the above model. The result confirms the intercepting capacity of roof greening and determines the roof greening threshold under the target of water interception, which provides important reference for sponge city construction.

Key wordssponge city    roof greening rate    humidity    global vegetation moisture index(GVMI)    simulation    Fuzhou City
收稿日期: 2016-11-15      出版日期: 2018-05-30
:  TP79TU981  
基金资助:福建省自然科学基金面上项目“福州新区生态本底遥感调查及控制线划定研究”(编号: 2016J01188);国家自然科学基金项目“刚竹毒蛾危害下的毛竹林遥感响应机理研究”(编号: 41501361)
通讯作者: 许章华
引用本文:   
林璐, 许章华, 黄旭影, 吕福康, 王前锋, 林倩. 福州海绵城市建设中屋顶绿化的截水作用研究[J]. 国土资源遥感, 2018, 30(2): 223-230.
Lu LIN, Zhanghua XU, Xuying HUANG, Fukang LYU, Qianfeng WANG, Qian LIN. Study of water storage effect of roof greening in the construction of Fuzhou sponge city. Remote Sensing for Land & Resources, 2018, 30(2): 223-230.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.02.30      或      https://www.gtzyyg.com/CN/Y2018/V30/I2/223
Fig.1  预处理后的福州市3区OLI影像(OLI B4(R),B3(G),B2(B)假彩色合成)
Fig.2  福州市3区IBI及建筑物信息提取
类别 参考合
计/个
分类合
计/个
正确
数/个
生产者
精度/%
使用者
精度/%
建筑 172 171 155 90.12 90.64
非建筑 328 329 300 79.37 79.16
合计 500 500 455
总体精度=91.00% Kappa=0.902 3
Tab.1  基于IBI提取的建筑物信息精度
Fig.3  福州市3区建筑区OLI影像(OLI B4(R),B3(G),B2(B)假彩色合成影像)
Fig.4  福州市3区绿化丰度
屋顶编号 屋顶实际
绿化率
绿化丰度 估测精度
1 10.16 11.95 82.38
2 19.60 15.63 79.74
3 30.45 32.18 94.32
4 41.89 47.21 87.30
5 50.07 51.36 97.43
6 62.74 66.53 93.96
7 70.10 71.82 97.55
8 79.95 84.97 93.72
Tab.2  绿化丰度对屋顶绿化率的估测效果评价
Fig.5  福州市3区GVMI
等级 屋顶绿化率/% 随机点/个 比例/% 平均湿度/%
[0,10) 4 395 37.89 6.44
[10,20) 3 323 28.66 6.14
[20,30) 2 007 17.31 6.15
[30,40) 953 8.24 6.23
[40,50) 324 2.79 16.54
[50,60) 326 2.81 24.53
[60,70) 178 1.54 28.62
[70,80] 67 0.58 35.33
合计 11 573 100.00
Tab.3  屋顶绿化率与湿度的对应关系
Fig.6  屋顶湿度-绿化率关系模型
模型 模型拟合度 模型参数
R2 P c b1 b2 b3
线性模型h=b1r+c 0.236 0 0.036 0.234
对数模型h=b1ln r+c 0.057 0 0.109 0.015
倒数模型h=b1/r+c 0.001 0.009 0.077 -1.251e-5
二次曲线模型h=b2r2-b1r+c 0.434 0 0.081 -0.327 1.014
三次曲线模型h=b3r3+b2r2+b1r+c 0.426 0 0.080 -0.317 0.973 0.043
复合模型h=cbr1 0.052 0 0.035 5.868
成长模型h=eb1r+c 0.052 0 -3.347 1.769
指数模型h=ceb1r 0.052 0 0.035 1.769
Tab.4  屋顶湿度-绿化率模型拟合度与参数估计
Fig.7  二次曲线模型的湿度增长速率
小区名称 屋顶平均
绿化率
GVMI
湿度
二次曲线模
型估测湿度
估测
精度
凯旋花园 27.12 7.74 6.68 86.30
新农村公寓 10.67 4.51 5.76 72.28
Tab.5  典型小区屋顶湿度-绿化率模型验证
Fig.8  典型小区屋顶绿化率模拟
新农村公寓小区 凯旋花园小区
屋顶绿化率 湿度增长率 屋顶绿化率 湿度增长率
[10.67,20.67) 22.70 [27.12,37.12) 49.69
[20.67,30.67) 34.98 [37.12,47.12) 53.98
[30.67,40.67) 53.21 [47.12,57.12) 49.07
[40.67,50.67) 52.55 [57.12,67.12) 41.31
[50.67,60.67) 46.13 [67.12,77.12) 35.89
[60.67,70.67) 39.56 [77.12,87.12) 31.13
[70.67,80.67) 34.07 [87.12,97.12] 27.34
[80.67,90.67] 29.69
Tab.6  典型小区屋顶湿度增长率与绿化率的对应关系
[1] Dietz M E . Low impact development practices:A review of current research and recommendations for future directions[J]. Water,Air,and Soil Pollution, 2007,186(1/4):351-363.
doi: 10.1007/s11270-007-9484-z
[2] Church S P . Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools[J]. Landscape and Urban Planning, 2015,134:229-240.
doi: 10.1016/j.landurbplan.2014.10.021
[3] Akbari H, Rose L S, Taha H . Analyzing the land cover of an urban environment using high-resolution orthophotos[J]. Landscape and Urban Planning, 2013,63(1):1-14.
doi: 10.1016/S0169-2046(02)00165-2
[4] 俞孔坚 . 海绵城市的三大关键策略:消纳、减速与适应[J].南方建筑, 2015(3):4-7.
doi: 10.3969/j.issn.1000-0232.2015.03.004
Yu K J . Three key strategies to achieve a sponge city:Retention,slow down and adaptation[J].South Architecture, 2015(3):4-7.
[5] 俞孔坚 . 让水流慢下来——六盘水明湖湿地公园[J].建筑技艺, 2015(2):92-101.
doi: 10.3969/j.issn.1674-6635.2015.02.014
Yu K J . Slow down:Liupanshui Minghu wetland park[J].Architecture Technique, 2015(2):92-101.
[6] 刘昌明, 张永勇, 王中根 , 等. 维护良性水循环的城镇化LID模式:海绵城市规划方法与技术初步探讨[J]. 自然资源学报, 2016,31(5):719-731.
Liu C M, Zhang Y Y, Wang Z G , et al. The LID pattern for maintaining virtuous water cyclein urbanized area:A preliminary study of planning and techniques for sponge city[J]. Journal of Natural Resources, 2016,31(5):719-731.
[7] 明冬萍, 骆剑承, 沈占锋 , 等. 高分辨率遥感影像信息提取与目标识别技术研究[J]. 测绘科学, 2005,30(3):18-20.
doi: 10.3771/j.issn.1009-2307.2005.03.004
Ming D P, Luo J C, Shen Z F , et al. Research on information extraction and target recognition from high resolution remote sensing image[J]. Science of Surveying and Mapping, 2005,30(3):18-20.
[8] Huston R, Chan Y C, Chapman H , et al. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia[J]. Water Research, 2012,46(4):1121-1132.
doi: 10.1016/j.watres.2011.12.008 pmid: 22196953
[9] 仇保兴 . 生态城改造分级关键技术[J].城市规划学刊, 2010(3):1-13.
doi: 10.3969/j.issn.1000-3363.2010.03.001
Qiu B X . Key techniques in classification and reconstruction of ecological cities[J].Urban Planning Forum, 2010(3):1-13.
[10] Oberndorfer E, Lundholm J, Bass B , et al. Green roofs as urban ecosystems:Ecological structures,functions,and services[J]. BioScience, 2007,57(10):823-833.
doi: 10.1641/B571005
[11] 邵天然, 李超骕, 曾辉 . 城市屋顶绿化资源潜力评估及绿化策略分析——以深圳市福田中心区为例[J]. 生态学报, 2012,32(3):4852-4860.
doi: 10.5846/stxb201110261592
Shao T R, Li C S, Zeng H . Resource potential assessment of urban roof greening and development strategies:A case study in Futian central district,Shenzhen,China[J]. Acta Ecologica Sinica, 2012,32(3):4852-4860.
[12] Niu H, Clark C, Zhou J T , et al. Scaling of economic benefits from green roof implementation in Washington, DC[J]. Environmental Science and Technology, 2010,44(11):4302-4308.
doi: 10.1021/es902456x pmid: 20462260
[13] Morales-Pinzón T, Rieradevall J, Gasol C M , et al. Modelling for economic cost and environmental analysis of rainwater harvesting systems[J]. Journal of Cleaner Production, 2015,87:613-626.
doi: 10.1016/j.jclepro.2014.10.021
[14] García-Montoya M, Bocanegra-Martínez A, Nápoles-Rivera F , et al. Simultaneous design of water reusing and rainwater harvesting systems in a residential complex[J]. Computers and Chemical Engineering, 2015,76:104-116.
doi: 10.1016/j.compchemeng.2015.02.011
[15] Ward S, Memon F A, Butler D . Performance of a large building rainwater harvesting system[J]. Water Research, 2012,46(16):5127-5134.
doi: 10.1016/j.watres.2012.06.043 pmid: 22840659
[16] Getter K L, Rowe D B, Andresen J A . Quantifying the effect of slope on extensive green roof stormwater retention[J]. Ecological Engineering, 2007,31(4):225-231.
doi: 10.1016/j.ecoleng.2007.06.004
[17] 李沛鸿, 张晓玉 . 遥感在屋顶绿化调查中的应用研究[J]. 江西理工大学学报, 2011,32(5):16-18.
Li P H, Zhang X Y . Research on remote sensing application in the investigation of green roof[J]. Journal of Jiangxi University of Science and Technology, 2011,32(5):16-18.
[18] 沈小乐, 邵振峰, 田英洁 . 纹理特征与视觉注意相结合的建筑区提取[J]. 测绘学报, 2014,43(8):842-847.
doi: j.cnki.11-2089.2014.0131
Shen X L, Shao Z F, Tian Y J . Build-up areas extraction by textural feature and visual attention mechanism[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(8):842-847.
[19] 强永刚, 殷建平, 祝恩 , 等. 基于小波变换和数学形态学的遥感图像人工建筑区提取[J]. 中国图象图形学报, 2008,13(8):1459-1464.
doi: 10.11834/jig.20080812
Qiang Y G, Yin J P, Zhu E , et al. Extraction of building area from remote sensing images based on wavelets transformation and mathematical morphology[J]. Journal of Image and Graphics, 2008,13(8):1459-1464.
[20] 乔伟峰, 刘彦随, 项灵志 , 等. 无参数高分辨率遥感影像的建筑高度快速提取方法[J]. 地球信息科学学报, 2015,17(8):995-1000.
doi: 10.3724/SP.J.1047.2015.00995
Qiao W F, Liu Y S, Xiang L Z , et al. Research on extracting building height rapidly based on high-resolution remote sensing images without parameters[J]. Journal of Geo-Information Science, 2015,17(8):995-1000.
[21] 杨山 . 发达地区城乡聚落形态的信息提取与分形研究——以无锡市为例[J]. 地理学报, 2000,55(6):671-678.
doi: 10.3321/j.issn:0375-5444.2000.06.004
Yang S . On extraction and fractal of urban and rural residential spatial pattern in developed area[J]. Acta Geographica Sinica, 2000,55(6):671-678.
[22] 查勇, 倪绍祥, 杨山 . 一种利用TM图像自动提取城镇用地信息的有效方法[J]. 遥感学报, 2003,7(1):37-40.
doi: 10.11834/jrs.20030107
Zha Y, Ni S X, Yang S . An effective approach to automatically extract urban land-use from TM imagery[J]. Journal of Remote Sensing, 2003,7(1):37-40.
[23] 徐涵秋 . 一种基于指数的新型遥感建筑用地指数及其生态环境意义[J]. 遥感技术与应用, 2007,22(3):301-308.
doi: 10.3969/j.issn.1004-0323.2007.03.001
Xu H Q . A new index-based built-up index(IBI) and its eco-environmental significance[J]. Remote Sensing Technology and Application, 2007,22(3):301-308.
[24] 崔一娇, 朱琳, 赵力娟 . 基于面向对象及光谱特征的植被信息提取与分析[J]. 生态学报, 2013,33(3):867-875.
doi: 10.5846/stxb201204110510
Cui Y J, Zhu L, Zhao L J . Abstraction and analysis of vegetation information based on object-oriented and spectra features[J]. Acta Ecologica Sinica, 2013,33(3):867-875.
[25] 崔天翔, 宫兆宁, 赵文吉 , 等. 不同端元模型下湿地植被覆盖度的提取方法——以北京市野鸭湖湿地自然保护区为例[J]. 生态学报, 2013,33(4):1160-1171.
doi: 10.5846/stxb201204270604
Cui T X, Gong Z N, Zhao W J , et al. Research on estimating wetland vegetation abundance based on spectral mixture analysis with different endmember model:A case study in Wild Duck Lake wetland,Beijing[J]. Acta Ecologica Sinica, 2013,33(4):1160-1171.
[26] Roberts D A, Gardner M, Church R , et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models[J]. Remote Sensing of Environment, 1998,65(3):267-279.
doi: 10.1016/S0034-4257(98)00037-6
[27] Ichoku C, Karnieli A . A review of mixture modeling techniques for sub-pixel land cover estimation[J]. Remote Sensing Reviews, 1996,13(3/4):161-186.
doi: 10.1080/02757259609532303
[28] 杨苏新, 张霞, 帅通 , 等. 基于混合像元分解的喀斯特石漠化地物丰度估测[J]. 遥感技术与应用, 2014,29(5):823-832.
doi: 10.11873/j.issn.10040323.2014.5.0823
Yang S X, Zhang X, Shuai T , et al. Estimating Karst rocky desertification feature abundance by pixel unmixing[J]. Remote Sensing Technology and Application, 2014,29(5):823-832.
[29] 张雪红, 田庆久 . 利用温湿度指数提高红树林遥感识别精度[J]. 国土资源遥感, 2012,24(3):65-70.doi: 10.6046/gtzyyg.2012.03.13.
doi: 10.6046/gtzyyg.2012.03.13
Zhang X H, Tian Q J . Application of the temperature-moisture index to the improvement of remote sensing identification accuracy of mangrove[J]. Remote Sensing for Land and Resources, 2012,24(3):65-70.doi: 10.6046/gtzyyg.2012.03.13.
[30] 徐涵秋 . 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013,33(5):889-897.
doi: 10.3969/j.issn.1000-6923.2013.05.019
Xu H Q . A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013,33(5):889-897.
[31] 周秉荣, 李凤霞, 申双和 , 等. 从MODIS资料提取土壤湿度信息的主成分分析方法[J]. 应用气象学报, 2009,20(1):114-118.
doi: 10.3969/j.issn.1001-7313.2009.01.015
Zhou B R, Li F X, Shen S H , et al. Principal component analysis method acquiring soil moisture information from MODIS data[J]. Journal of Applied Meteorological Science, 2009,20(1):114-118.
[32] 谷松岩, 李万彪, 张文建 . 利用TRMM/TMI资料提取地表层湿度信息试验[J]. 遥感学报, 2005,9(2):166-175.
doi: 10.3321/j.issn:1007-4619.2005.02.009
Gu S Y, Li W B, Zhang W J . Retrieving soil moisture from TRMM/TMI[J]. Journal of Remote Sensing, 2005,9(2):166-175.
[33] Ceccato P, Flasse S, Grégoire J M . Designing a spectral index to estimate vegetation water content from remote sensing data:Part 2.Validation and applications[J]. Remote Sensing of Environment, 2002,82(2/3):198-207.
doi: 10.1016/S0034-4257(02)00036-6
[1] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[2] 袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
[3] 王佳新, 萨楚拉, 毛克彪, 孟凡浩, 罗敏, 王牧兰. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1): 231-239.
[4] 郭瑞琦, 陆波, 陈恺霖. 基于CLUMondo模型的多情景土地利用变化动态模拟——以广西沿海城市为例[J]. 国土资源遥感, 2020, 32(1): 176-183.
[5] 廖戬, 顾行发, 占玉林, 张雅洲, 任芯雨, 师帅一. 高分一号卫星影像谐波模型模拟方法研究[J]. 国土资源遥感, 2018, 30(3): 106-112.
[6] 吴凯, 舒红, 聂磊, 焦振航. 基于Triple Collocation方法的土壤湿度误差分析[J]. 国土资源遥感, 2018, 30(3): 68-75.
[7] 田洁玫, 陈杰. 高标准粮田区鹤壁市土地利用情景模拟预测研究[J]. 国土资源遥感, 2018, 30(1): 150-156.
[8] 刘瑶, 张文娟, 张兵, 甘甫平. 中红外大气强吸收通道的地表辐亮度图像模拟[J]. 国土资源遥感, 2017, 29(3): 98-103.
[9] 赵菲菲, 包妮沙, 吴立新, 孙瑞. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.
[10] 于海洋, 罗玲, 马慧慧, 李辉. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017, 29(2): 138-143.
[11] 张连翀, 李国庆, 于文洋, 冉全. 基于水平集的洪涝淹没范围时空模拟方法[J]. 国土资源遥感, 2017, 29(1): 92-96.
[12] 李伟, 陈秀万, 彭学峰, 肖汉. GNSS-R土壤湿度估算体系架构研究与初步实现[J]. 国土资源遥感, 2017, 29(1): 213-220.
[13] 王喆, 赵哲, 闫柏琨, 杨苏明. 基于Hapke模型混合岩矿粉末反射率光谱模拟[J]. 国土资源遥感, 2017, 29(1): 186-191.
[14] 韩亮, 戴晓爱, 邵怀勇, 王虹俨. 基于实地大气模式改进的大气透射率反演方法[J]. 国土资源遥感, 2016, 28(4): 88-92.
[15] 魏丹丹, 甘甫平, 张振华, 肖晨超, 唐绍凡, 赵慧洁. 基于波谱模拟的红外成像仪信噪比指标设置研究[J]. 国土资源遥感, 2016, 28(4): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发