Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 26-32    DOI: 10.6046/gtzyyg.2018.03.04
     本期目录 | 过刊浏览 | 高级检索 |
国家尺度异源土地覆被遥感产品精度评价
宋宏利1,2, 张晓楠3()
1. 河北工程大学地球科学与工程学院,邯郸 056038
2. 河北省煤炭资源综合开发与利用协同创新中心,邯郸 056038
3. 河北工程大学矿业与测绘工程学院,邯郸 056038
Precision validation of multi-sources land cover products derived from remote sensing
Hongli SONG1,2, Xiaonan ZHANG3()
1. School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China
2. Heibei Collaborative Innovation Center of the Comprehensive Development and Utilization of Coal Resource, Handan 056038, China
3. School of mining and surveying engineering, Hebei University of Engineering, Handan 056038, China
全文: PDF(2814 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以现有的全球尺度土地覆被遥感产品为研究对象,以通过国际组织发布的土地覆被验证数据为参考,采用总体精度、生产者精度及用户精度等指标对FROM,MODIS,ESACCI和GLOBCOVER 4种产品的类别精度进行了评价。结果表明: FROM和MODIS产品与参考数据的总体一致性最高,其总体精度分别为0.69和0.67,ESACCI总体精度为0.65,GLOBCOVER产品和参考数据的总体一致性相对较低,其总体精度仅为0.55; 4种产品的林地、耕地、建设用地和裸地均具有较高的类别精度,其生产者精度及用户精度均高于0.5,4种产品的灌木类别精度均较低,除MODIS产品外,其他3种产品均低于0.3。研究成果揭示了4种土地覆被遥感产品在中国区域的类别精度,既为研究区域从事生态环境建模、土地覆被变化、自然资源调查等领域的科学研究提供了数据选择的依据,也为未来大尺度土地覆被遥感制图的研究方向提供了一定参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋宏利
张晓楠
关键词 国家尺度土地覆被遥感产品类别混淆误差矩阵精度评价    
Abstract

Global land cover maps (GLC) are essential input data for many scientific studies, so assessment of their category accuracy and category confusion is very important for some specific applications. In this paper, the authors chose China as the study region and FROM, MODIS, GLOBCOVER and ESACCI as land cover data for validation. The authors first aggregated the four GLC and referenced data provided by some international organizations into eight categories, and then validated four products through the category consistency and confusion matrix in national scale. The relative comparison between FROM, MODIS, ESACCI and GLOBCOVER shows that the four land cover products have the similar category constituent. Forest, grassland, cropland and bare land are the major land cover categories, whereas shrub, build up and water/wetland are relatively rare. Through comparing one by one between referenced data and land cover products, the authors constructed the confusion matrix, and the validated results demonstrate that FROM and MODIS have the best overall agreement with referenced data at national scale; for example, FROM’s overall accuracy is 0.69, and MODIS is 0.67, and ESACCI’s overall value is 0.65. Conversely, GLOBCOVER has the worst overall accuracy, with the value being only 0.55. Forest, cropland, built up land and bare land all have the better category accuracy, so each of them would be as input data for national forest inventory, food security and urban expansion, but shrub's category accuracy is low in four global land cover products, with confusion mainly occurring with forest, grass and cropland . The study results not only provide some scientific reference for selecting the input data for ecological environment modeling, land cover change analysis, natural resource survey, but also provide a reasonable advice for the research direction in future land cover mapping projects.

Key wordsnational scale    land cover products    category confusion    error matrix    accuracy evaluation
收稿日期: 2017-03-23      出版日期: 2018-09-10
:  TP79  
基金资助:河北省自然科学基金“大尺度多源遥感信息融合土地覆被制图研究”(D2013402014);河北省高等学校科学技术研究重点项目“异质地表种植结构长时间序列遥感精细提取及示范研究”(ZD2017212)
通讯作者: 张晓楠
作者简介: 宋宏利(1980-),博士,副教授,硕士生导师,主要研究方向为遥感产品精度验证。Email: songholi2003@163.com。
引用本文:   
宋宏利, 张晓楠. 国家尺度异源土地覆被遥感产品精度评价[J]. 国土资源遥感, 2018, 30(3): 26-32.
Hongli SONG, Xiaonan ZHANG. Precision validation of multi-sources land cover products derived from remote sensing. Remote Sensing for Land & Resources, 2018, 30(3): 26-32.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.04      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/26
土地覆被遥感产品 FROM ESACCI MODIS GLOBCOVER
空间分辨率/m 250 300 500 300
分类数据 Landsat TM/ETM+ MERIS地表放射率及
SPOT-VGI数据
每月的EVI,LST和1—7波段的8 d合成数据 MERIS 10 d合成数据
时间基点 2010年 2010年 2010年 2009年
分类方法 支持向量机和图像分割技术 时空聚类和机器学习分类 监督决策树分类 时空聚类及专家判读
Tab.1  多源土地覆被遥感产品信息表
Fig.1  中国区域参考数据空间分布图(审图号: GS(2016)2885号)
土地覆被类别 FROM GLOBCOVER MODIS ESACCI GEOWIKI GLCNMO GLC2000
林地 20 40—110,160,170 1—5 50-100,160,170 1 1—5 1—10
灌木 40,71 130 6—9 120 2 7 11,12
草地 30,72 120,140 10 110,130,140 3 8,9 13
耕地 10 11—30 12,14 10—40 4 11,12,13 16—18
湿地水域 50,60 180,210 11,17 180,210 6,8 15 15,20
建设用地 80 190 13 190 7 - 22
冰雪 100 220 15 220 10 - 21
裸地 90 150,200 16 150,200 9 10,16,17 14,19
Tab.2  聚合土地覆被类别与原始土地覆被数据类别对应表
类别代码 类别名称 验证点数目 所占比例/%
1 林地 537 18.12
2 灌木 171 5.77
3 草地 381 12.85
4 耕地 845 28.51
5 水域/湿地 29 0.98
6 城市及建设用地 692 23.35
7 永久性冰雪 257 8.67
8 裸地 52 1.75
Tab.3  中国区域参考数据土地覆被类别及组成
Fig.2  4种土地覆被遥感产品类别面积一致性比较
Fig.3  不同土地覆被类别的生产者精度和用户精度比较
Fig.4  中国区域多源数据类别一致性空间特征(审图号: GS(2016)2885号)
[1] 廖安平, 陈利军, 陈军 , 等. 全球陆表水体高分辨率遥感制图[J]. 中国科学(地球科学), 2014,44(8):1634-1645.
Liao A P, Chen L J, Chen J , et al. High-resolution remote sensing mapping of global land water[J]. Science China(Earth Sciences), 2014,57(10):2305-2316.
[2] 陈军, 陈晋, 宫鹏 , 等. 全球地表覆盖高分辨率遥感制图[J]. 地理信息世界, 2011,9(2):12-14.
doi: 10.3969/j.issn.1672-1586.2011.02.002
Chen J, Chen J, Gong P , et al. Higher resolution global land cover mapping[J]. Geomatics World, 2011,9(2):12-14.
[3] LaFontaine J H, Hay L E, Viger R J , et al. Effects of climate and land cover on hydrology in the southeastern U.S.:Potential impacts on watershed planning[J]. Journal of the American Water Resources Association, 2015,51(5):1235-1261
doi: 10.1111/1752-1688.12304
[4] Gagné S A, Eigenbrod F, Bert D G , et al. A simple landscape design framework for biodiversity conservation[J]. Landscape and Urban Planning, 2015,136:13-27.
doi: 10.1016/j.landurbplan.2014.11.006
[5] Mantyka-Pringle C S, Visconti P, Di Marco M , et al. Climate change modifies risk of global biodiversity loss due to land-cover change[J]. Biological Conservation, 2015,187:103-111.
doi: 10.1016/j.biocon.2015.04.016
[6] Gessesse B, Bewket W, Bräuning A . Model‐based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed,Ethiopia[J]. Land Degradation & Development, 2015,26(7):711-724.
[7] Loveland T R, Reed B C, Brown J F , et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data[J]. International Journal of Remote Sensing, 2000,21(6/7):1303-1330.
doi: 10.1080/014311600210191
[8] Friedl M A , McIver D K,Hodges J C F,et al.Global land cover mapping from MODIS:Algorithms and early results[J]. Remote Sensing of Environment, 2002,83(1/2):287-302.
doi: 10.1016/S0034-4257(02)00078-0
[9] Hansen M C, Defries R S , Townshend J R G,et al.Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000,21(6/7):1331-1364.
doi: 10.1080/014311600210209
[10] Bartholomé E, Belward A S . GLC2000:A new approach to global land cover mapping from Earth observation data[J]. International Journal of Remote Sensing, 2006,26(9):1959-1977.
doi: 10.1080/01431160412331291297
[11] Chen J, Chen J, Liao A P , et al. Global land cover mapping at 30 m resolution:A POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,103:7-27.
doi: 10.1016/j.isprsjprs.2014.09.002
[12] Yu L, Wang J, Gong P . Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets:A segmentation-based approach[J]. International Journal of Remote Sensing, 2013,34(16):5851-5867.
doi: 10.1080/01431161.2013.798055
[13] Arino O, Bicheron P, Achard F , et al. GlobCover:The most detailed portrait of Earth[J]. European Space Agency Bulletin, 2008,136:24-31.
[14] Tsendbazar N E, De Bruin S, Fritz S , et al. Spatial accuracy assessment and integration of global land cover datasets[J]. Remote Sensing, 2015,7(12):15804-15821.
doi: 10.3390/rs71215804
[15] Defourny P, Mayaux P, Herold M , et al. Global land-cover map validation experiences:Toward the characterization of quantitative uncertainty[M] //Chandra P G.Remote Sensing of Land Use and Land Cover: Principles and Applications.Engelska:CRC Press, 2012.
[16] Friedl M A, Sulla-Menashe D, Tan B , et al. MODIS Collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010,114(1):168-182.
doi: 10.1016/j.rse.2009.08.016
[17] Olofsson P, Stehman S V, Woodcock C E , et al. A global land-cover validation data set,part I:Fundamental design principles[J]. International Journal of Remote Sensing, 2012,33(18):5768-5788.
doi: 10.1080/01431161.2012.674230
[18] Fritz S, McCallum I ,Schill C ,et al.Geo-Wiki.Org:The use of crowdsourcing to improve global land cover[J]. Remote Sensing, 2009,1(3):345-354.
doi: 10.3390/rs1030345
[19] Tateishi R, Uriyangqai B, Al-Bilbisi H , et al. Production of global land cover data-GLCNMO[J]. International Journal of Digital Earth, 2011,4(1):22-49.
doi: 10.1080/17538941003777521
[20] 陆苗, 吴文斌, 张莉 , 等. 不同耕地数据集在中国区域的对比研究[J]. 中国科学(地球科学), 2016,46(11):1459-1471.
Lu M, Wu W B, Zhang L , et al. A comparative analysis of five global cropland datasets in China[J]. Science China(Earth Sciences), 2016,59(12):2307-2317
[21] Congalton R . G.A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991,37(1):35-46.
doi: 10.1046/j.1365-2249.2000.01137.x
[1] 陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
[2] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[3] 刁娇娇, 龚鑫烨, 李明诗. 利用综合变化检测方法进行土地覆盖变化制图[J]. 国土资源遥感, 2018, 30(1): 157-165.
[4] 曲培青, 施润和, 刘朝顺, 钟洪麟. 基于MODIS地表参数产品和地理数据的近地层气温估算方法评价--以安徽省为例[J]. 国土资源遥感, 2011, 23(4): 78-82.
[5] 熊金国, 王世新, 周艺. 不同指数模型提取ALOS AVNIR-2影像中水体的敏感性和精度分析[J]. 国土资源遥感, 2010, 22(4): 46-50.
[6] 甘甫平, 王润生, 王永江, 付正文. 基于遥感技术的土地利用与土地覆盖的分类方法[J]. 国土资源遥感, 1999, 11(4): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发