Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 40-47    DOI: 10.6046/gtzyyg.2018.03.06
     本期目录 | 过刊浏览 | 高级检索 |
积雪陆表微波观测资料干扰识别方法对比分析
吴莹, 姜苏麟, 王振会
南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室,南京 210044
Comparison and analysis of the interference identification methods for microwave measurements over snow land
Ying WU, Sulin JIANG, Zhenhui WANG
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Joint International Research Laboratory of Climate and Environment Change (ILCEC)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(4928 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地面无线电干扰对星载微波辐射计资料的影响日益凸显,很大程度上降低了微波反演地表参数的精度。以常年积雪覆盖的南极大陆为研究区域,利用2011年7月1—7日先进微波扫描辐射计(advanced microwave scanning radiometer - earth observing system,AMSR-E)观测资料,采用频谱差法、标准化的主成分分析法(normalized principal component analysis,NPCA)和双主成分分析法(double principal component analysis,DPCA)对研究区域的无线电频率干扰(radio-frequency interference,RFI)进行识别和对比分析。研究发现,对于有积雪覆盖的陆地表面,频谱差法不能准确地检测出RFI信号,NPCA在有冰雪覆盖的海岸线附近会出现误判,而DPCA更适用于所有海冰或积雪覆盖地区的RFI识别,且AMSR-E低频通道较强的RFI信号大多分布在观测站附近。总体而言,水平极化比垂直极化时的RFI信号强,而在部分地区,10.65 GHz通道的RFI信号在垂直极化方式时较水平极化方式强。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴莹
姜苏麟
王振会
关键词 先进微波扫描辐射计(AMSR-E)无线电频率干扰(RFI)积雪陆表    
Abstract

The influence of radio-frequency interference (RFI) on spaceborne microwave radiometer measurements is increasingly prominent, which largely reduces the accuracy of geophysical parameter inversion from microwave observations. RFI over Antarctica land was detected and analyzed using spectral difference, normalized principal component analysis (NPCA) and double principal component analysis (DPCA) method based on AMSR-E (the advanced microwave scanning radiometer - earth observing system) Leval 2A measurements during July 1-7, 2011. It is found that, over snow or ice-covered land, the RFI signals are difficult to be detected by spectral difference method, while NPCA method works but for costal areas. However, the DPCA method works well over the Atlantic land. Furthermore. It is also found that stronger RFI signals are detected widely over the Antarctica land at low frequency channels of AMSR-E, and most of the strong RFI signals are collocated with research stations. In general, the RFI is stronger at horizontal polarization channels than those at vertical polarization channels, but in some parts, RFI signals at 10.65 GHz for vertical polarization are stronger than those for horizontal polarization.

Key wordsadvanced microwave scanning radiometer-earth observation system (AMSR-E)    radio-frequency interference (RFI)    snow land
收稿日期: 2016-10-18      出版日期: 2018-09-10
:  TP422.2TP722.6  
基金资助:国家自然科学基金项目“FY-3微波数据RFI订正及我国典型地区地表微波发射率反演研究”(41305033);江苏省基础研究计划青年基金项目“微波地表温度计算及其对中国典型地区地表发射率反演改进研究”(BK20150911);江苏高校优势学科建设工程资助项目(PAPD)
作者简介: 吴 莹(1980-),女,讲师,博士,主要从事大气探测与大气遥感方面的教学和研究工作。Email: wuying_nuist@163.com。
引用本文:   
吴莹, 姜苏麟, 王振会. 积雪陆表微波观测资料干扰识别方法对比分析[J]. 国土资源遥感, 2018, 30(3): 40-47.
Ying WU, Sulin JIANG, Zhenhui WANG. Comparison and analysis of the interference identification methods for microwave measurements over snow land. Remote Sensing for Land & Resources, 2018, 30(3): 40-47.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.06      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/40
Fig.1  2011年7月1—7日垂直极化时的亮温分布
Fig.2  频谱差法检测的垂直极化时RFI指数分布
Fig.3  NPCA 检测的6.925 GHz水平极化RFI分布与观测站点分布
Fig.4  A1A2重建得到的6.925 GHz,10.65 GHz和18.7 GHz水平极化时的亮温分布
Fig.5  DPCA 检测的6.925 GHz水平极化方式下的RFI分布
Fig.6  DPCA检测的6.925 GHz和10.65 GHz的RFI分布
范围 6.925 GHz 10.65 GHz
H(水平
极化)
V(垂直
极化)
H(水平
极化)
V(垂直
极化)
南极洲 最大值 25.64 24.96 25.83 25.27
累加值 62 230.56 60 757.22 59 260.72 58 916.54
红框地区 最大值 25.64 24.96 25.83 25.27
累加值 5 126.41 5 013.62 5 632.58 5 543.26
蓝框地区 最大值 7.86 8.02 9.36 9.18
累加值 235.76 164.37 307.64 331.50
Tab.1  6.925 GHz和10.65 GHz RFI指数的最大值和累加值
范围 判断条件 百分比/%
南极洲 RFI6H - RFI6V > 0 48.35
RFI10H - RFI10V > 0 51.50
红框地区 RFI6H - RFI6V > 0 60.15
RFI10H - RFI10V > 0 67.02
蓝框地区 RFI6H - RFI6V > 0 46.61
RFI10H - RFI10V > 0 52.03
Tab.2  RFI指数水平极化方式大于垂直极化方式像素点占总点数的比例
[1] 邹晓蕾 . 极轨气象卫星微波成像仪资料[J]. 气象科技进展, 2012,2(3):45-50.
Zou X L . Serial of applications of satellite observations introduction to microwave imager radiance observations from polar-orbiting meteorological satellites[J]. Advances in Meteorological Science and Technology, 2012,2(3):45-50.
[2] 施建成, 杜阳, 杜今阳 , 等. 微波遥感地表参数反演进展[J]. 中国科学(地球科学), 2012,42(6):814-842.
Shi J C, Du Y, Du J Y , et al. Progresses on microwave remote sensing of land surface parameters[J]. Science China Earth Sciences, 2012,55(7):1052-1078.
[3] 张思勃, 官莉 . AMSR-E观测资料干扰对反演地表参数的影响[J]. 中国环境科学, 2015,35(1):260-268.
Zhang S B, Guan L . Effect of AMSR-E data interference on the retrieval of land surface parameters[J]. China Environmental Science, 2015,35(1):260-268.
[4] 吴莹, 王振会 . 被动微波遥感反演地表发射率研究进展[J]. 国土资源遥感, 2012,24(4):1-7.doi: 10.6046/gtzyyg.2012.04.01.
doi: 10.6046/gtzyyg.2012.04.01
Wu Y, Wang Z H . Advances in the study of land surface emissivity retrieval from passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2012,24(4):1-7.doi: 10.6046/gtzyyg.2012.04.01.
[5] 钱博, 陆其峰, 杨素英 , 等. 卫星遥感微波地表发射率研究综述[J]. 地球物理学进展, 2016,31(3):960-964.
Qian B, Lu Q F, Yang S Y , et al. Review on microwave land surface emissivity by satellite remote sensing[J]. Progress in Geophysics, 2016,31(3):960-964.
[6] 李芹, 钟若飞 . 模拟AMSR-E数据的地表多参数反演[J]. 国土资源遥感, 2011,23(1):42-47.doi: 10.6046/gtzyyg.2011.01.08.
doi: 10.6046/gtzyyg.2011.01.08
Li Q, Zhong R F . Multiple surface parameters retrieval of simulated AMSR-E data[J]. Remote Sensing for Land and Resources, 2011,23(1):42-47.doi: 10.6046/gtzyyg.2011.01.08.
[7] 鲍艳松, 毛飞, 闵锦忠 , 等. 基于FY-3B/MWRI数据的裸土区土壤湿度反演[J]. 国土资源遥感, 2014,26(4):131-137.doi: 10.6046/gtzyyg.2014.04.21.
doi: 10.6046/gtzyyg.2014.04.21
Bao Y S, Mao F, Min J Z , et al. Retrieval of bare soil moisture from FY-3B/MWRI data[J]. Remote Sensing for Land and Resources, 2014,26(4):131-137.doi: 10.6046/gtzyyg.2014.04.21.
[8] 毛克彪, 施建成, 李召良 , 等. 用被动微波AMSR数据反演地表温度及发射率的方法研究[J]. 国土资源遥感, 2005,17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
doi: 10.6046/gtzyyg.2005.03.04
Mao K B, Shi J C, Li Z L , et al. The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J]. Remote Sensing for Land and Resources, 2005,17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
[9] 周芳成, 宋小宁, 李召良 . 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
doi: 10.6046/gtzyyg.2014.01.01
Zhou F C, Song X N, Li Z L . Progress of land surface temperature retrieval based on passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
[10] 刘晶, 马红章, 杨乐 , 等. 基于被动微波的地表温度反演研究综述[J]. 遥感技术与应用, 2012,27(6):812-821.
Liu J, Ma H Z, Yang L , et al. A survey of surface temperature retrieval by passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2012,27(6):812-821.
[11] 孙知文, 于鹏珊, 夏浪 , 等. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015,27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
doi: 10.6046/gtzyyg.2015.01.02
Sun Z W, Yu P S, Xia L , et al. Progress in study of snow parameter inversion by passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2015,27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
[12] Li L, Njoku E G, Im E , et al. A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(2):380-390.
doi: 10.1109/TGRS.2003.817195
[13] Li L, Gaiser P W, Bettenhausen M H , et al. WindSat radio-frequency interference signature and its identification over land and ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(3):530-539.
doi: 10.1109/TGRS.2005.862503
[14] Njoku E G, Ashcroft P, Chan T K , et al. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(5):938-947.
doi: 10.1109/TGRS.2004.837507
[15] Wu Y, Weng F Z . Detection and correction of AMSR-E radio-frequency interference[J]. Acta Meteorologica Sinica, 2011,25(5):669-681.
doi: 10.1007/s13351-011-0510-0
[16] Wu Y, Weng F Z . Applications of an AMSR-E RFI detection and correction algorithm in 1-DVAR over land[J]. Journal of Meteorological Research, 2014,28(4):645-655.
doi: 10.1007/s13351-014-3075-x
[17] Lacava T, Coviello I, Faruolo M , et al. A multitemporal investigation of AMSR-E C-band radio-frequency interference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(4):2007-2015.
doi: 10.1109/TGRS.2012.2228487
[18] Zou X L, Zhao J, Weng F Z , et al. Detection of radio-frequency interference signal over land from FY-3B microwave radiation imager (MWRI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(12):4994-5003.
doi: 10.1109/TGRS.2012.2191792
[19] Zhao J, Zou X L, Weng F Z . WindSat radio-frequency interference signature and its identification over Greenland and Antarctic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(9):4830-4839.
doi: 10.1109/TGRS.2005.862503
[20] 官莉, 张思勃 . 星载微波辐射计欧洲大陆无线电频率干扰分析[J]. 光学学报, 2014,34(7):0728004.
Guan L, Zhang S B . Source analysis of radio-frequency interference over Europe land from advanced microwave scanning radiometer-E[J]. Acta Optica Sinica, 2014,34(7):0728004.
[21] Research stations and transportation in Antarctica[EB/OL].[ 2016- 10- 18] .
[1] 吴莹, 姜苏麟, 王振会. 无线电频率干扰对MWRI资料反演地表温度的影响[J]. 国土资源遥感, 2018, 30(4): 90-96.
[2] 吴莹, 钱博, 王振会. 被动微波遥感观测资料干扰对地表参数反演的影响分析[J]. 国土资源遥感, 2017, 29(3): 176-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发