Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 89-95    DOI: 10.6046/gtzyyg.2018.03.13
     本期目录 | 过刊浏览 | 高级检索 |
Landsat8 OLI数据斑岩铜矿遥感蚀变矿物组合提取研究
汪子义1, 张廷斌1,2,3(), 易桂花1, 钟康惠1, 别小娟1, 王继斌1, 孙姣姣1
1. 成都理工大学地球科学学院,成都 610059
2. 成都理工大学工程技术学院, 乐山 614000
3. 自然资源部地学空间信息技术重点实验室,成都 610059
Extraction of hydrothermal alteration mineral groups of porphyry copper deposits using Landsat8 OLI data
Ziyi WANG1, Tingbin ZHANG1,2,3(), Guihua YI1, Kanghui ZHONG1, Xiaojuan BIE1, Jibin WANG1, Jiaojiao SUN1
1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
2. College of Engineering and Technical, Chengdu University of Technology, Leshan 614000, China
3. Key Laboratory of Geoscience Spatial Information Technology, Ministry of Nature Resources, Chengdu 610059, China
全文: PDF(2047 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

Landsat8 OLI数据NIR波段(0.845~0.885 μm)和SWIR2波段(2.100~2.300 μm)波谱分辨率的提高,已分别成为含Fe 3+类、Al-OH类和Mg-OH类蚀变矿物的诊断性谱段。通过利用混合调制匹配滤波(mixture tuned matched filtering,MTMF)方法,开展多龙矿集区铁格隆远景区含Fe 3+类、Al-OH类和Mg-OH类蚀变矿物信息提取研究,并与Hyperion数据蚀变矿物信息提取结果进行对比分析。研究结果表明,基于Landsat8 OLI提取的3类蚀变矿物较为可靠; 铁格隆远景区蚀变矿物组合的空间分布与斑岩铜矿经典蚀变分带特征基本吻合; 遥感蚀变分带由内而外分别为绢英岩化+泥化带(Al-OH类蚀变矿物)和青磐岩化带(Mg-OH类蚀变矿物),Fe 3+矿物组合则分布在绢英岩化+泥化带和青磐岩化带之间或过渡带上。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪子义
张廷斌
易桂花
钟康惠
别小娟
王继斌
孙姣姣
关键词 OLI斑岩铜矿蚀变分带MTMF遥感铁格隆    
Abstract

The enhancing of NIR band and SWIR2 band of OLI data makes the spectra become the diagnostic spectra of ferric iron minerals, Al-OH and Mg-OH alteration minerals. The authors used the mixture tuned matched filtering (MTMF) mapping method to extract ferric iron, Al-OH and Mg-OH alteration minerals in Tiegelong prospective block of the Duolong porphyry Cu-Au ore concentration area. Compared with the results of mineral mapping from Hyperion data, the three mineral mapping types extracted from Landsat8 OLI are reliable. At the same time, the spatial distribution pattern of alteration minerals agrees with the hydrothermal alteration zone of typical porphyry copper deposits. The remote sensing alteration zones from interior to exterior of the Tiegelong porphyry Cu ore block are phyllic+argillic zone (Al-OH minerals) and propylitic zone (Mg-OH minerals), and the ferric iron minerals are between the arephyllic+argillic and propylitic zones.

Key wordsOLI    porphyry copper deposit    hydrothermal alteration mineral zones    MTMF    remote sensing    Tiegelong
收稿日期: 2016-11-23      出版日期: 2018-09-10
:  TP79  
基金资助:国家自然科学基金项目“西藏典型斑岩型铜矿床遥感蚀变信息重现性机理研究”(41202233);自然资源部公益性行业科研专项“斑岩-浅成低温热液成矿系统研究及勘查评价示范——以西藏多龙整装勘查区为例”(201511017);中国地质调查局地质调查项目“西藏物玛—先遣地区斑岩型铜金矿成矿规律研究与找矿靶区优选”(12120113095300)
通讯作者: 张廷斌
作者简介: 汪子义(1988-),男,硕士研究生,主要从事遥感地质研究。Email: 763340359@qq.com。
引用本文:   
汪子义, 张廷斌, 易桂花, 钟康惠, 别小娟, 王继斌, 孙姣姣. Landsat8 OLI数据斑岩铜矿遥感蚀变矿物组合提取研究[J]. 国土资源遥感, 2018, 30(3): 89-95.
Ziyi WANG, Tingbin ZHANG, Guihua YI, Kanghui ZHONG, Xiaojuan BIE, Jibin WANG, Jiaojiao SUN. Extraction of hydrothermal alteration mineral groups of porphyry copper deposits using Landsat8 OLI data. Remote Sensing for Land & Resources, 2018, 30(3): 89-95.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.13      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/89
波段号 波长范围/μm 空间分辨率/m
8 (pan) 0.520~0.680 15
1 (Coastal) 0.433~0.453 30
2 (Blue) 0.450~0.515
3 (Green) 0.525~0.600
4 (Red) 0.630~0.680
5 (NIR) 0.845~0.885
9 (Cirrus) 1.360~1.390
6 (SWIR1) 1.560~1.660
7 (SWIR2) 2.100~2.300
Tab.1  OLI数据波段设置
Fig.1  典型蚀变矿物波谱曲线对比
端元编号 矿物名称 SAM 得分
1 高岭石+蒙脱石+白云母 0.912+0.893+0.886
2 绿泥石+绿帘石 0.915+0.901
3 黄钾铁矾+赤铁矿 0.818+0.792
Tab.2  OLI数据3种端元USGS波谱库波谱SAM得分
Fig.2  3种端元矿物丰度
端元编号 矿物名称 SAM 得分
1 白云母 0.864
2 高岭石+蒙脱石 0.859+0.825
3 绿泥石 0.888
4 黄钾铁矾+针铁矿+褐铁矿 0.837+0.819+0.813
Tab.3  Hyperion数据4种端元USGS波谱库SAM匹配得分
Fig.3  4种端元矿物丰度
Fig.4  OLI和Hyperion数据遥感蚀变分带特征
[1] Sillitoe R H . Porphyry copper systems[J]. Economic Geology, 2010,105(1):3-41.
doi: 10.2113/gsecongeo.105.1.3
[2] 芮宗瑶, 陆彦, 李光明 , 等. 西藏斑岩铜矿的前景展望[J]. 中国地质, 2003,30(3):302-308.
Rui Z Y, Lu Y, Li G M , et al. Looking forward to the prospects of porphyry copper deposits in Tibet[J]. Geology in China, 2003,30(3):302-308.
[3] 周平 . 新常态下中国铜资源供需前景分析与预测[D].北京:中国地质大学(北京), 2015.
Zhou P . An analysis and forecast of China copper supply and demand prospects under the new normal economy[D].Beijing:China University of Geosciences( Beijing), 2015.
[4] Lowell J D, Guilbert J M . Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 1970,65(4):373-408.
doi: 10.2113/gsecongeo.65.4.373
[5] Rowan L C, Schmidt R G, Mars J C . Distribution of hydrothermally altered rocks in the Reko Diq,Pakistan mineralized area based on spectral analysis of ASTER data[J]. Remote Sensing of Environment, 2006,104(1):74-87.
doi: 10.1016/j.rse.2006.05.014
[6] Zhang T B, Yi G H, Li H M , et al. Integrating data of ASTER and landsat-8 OLI(AO) for hydrothermal alteration mineral mapping in Duolong porphyry Cu-Au deposit,Tibetan Plateau,China[J]. Remote Sensing, 2016,8(11):890.
doi: 10.3390/rs8110890
[7] 张远飞, 袁继明, 杨自安 , 等. 基于物理意义的二维散点图类型划分与遥感蚀变信息提取[J]. 国土资源遥感, 2013,25(2):57-62.doi: 10.6046/gtzyyg.2013.02.11.
Zhang Y F, Yuan J M, Yang Z A , et al. Type classification of 2D scatter plot of remote sensing image based on the physical meaning and extraction of remote sensing alteration information[J]. Remote Sensing for Land and Resources, 2013,25(2):57-62.doi: 10.6046/gtzyyg.2013.02.11.
[8] 张远飞, 吴德文, 袁继明 , 等. 遥感蚀变信息多层次分离技术模型与应用研究[J]. 国土资源遥感, 2011,23(4):6-13.doi: 10.6046/gtzyyg.2011.04.02.
doi: 10.6046/gtzyyg.2011.04.02
Zhang Y F, Wu D W, Yuan J M , et al. The model and application of multi-level detaching technique of remote sensing alteration information[J]. Remote Sensing for Land and Resources, 2011,23(4):6-13.doi: 10.6046/gtzyyg.2011.04.02.
[9] Yang Z A, Peng S L, Zhu G C , et al. Spectrum spatial structure characteristic analysis of remote sensing alteration information and interference factors[J]. Journal of Central South University of Technology, 2009,16(4):647-652.
doi: 10.1007/s11771-009-0107-2
[10] Sojdehee M, Rasa I, Nezafati N , et al. Application of spectral analysis to discriminate hydrothermal alteration zones at Daralu copper deposit,SE Iran[J]. Arabian Journal of Geosciences, 2015,9(1):41.
[11] 张廷斌, 唐菊兴, 李志军 , 等. 西藏尕尔穷铜金矿多光谱遥感地质特征与外围找矿预测[J]. 国土资源遥感, 2014,26(4):170-178.doi: 10.6046/gtzyyg.2014.04.27.
doi: 10.6046/gtzyyg.2014.04.27
Zhang T B, Tang J X, Li Z J , et al. Remote sensing geological characteristics and ore prediction in the Ga’erqiong Cu-Au deposit,Tibet[J]. Remote Sensing for Land and Resources, 2014,26(4):170-178.doi: 10.6046/gtzyyg.2014.04.27.
[12] Ramadan T M, Kontny A . Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District,SE Desert,Egypt[J]. Journal of African Earth Sciences, 2004,40(1/2):89-99.
doi: 10.1016/j.jafrearsci.2004.06.003
[13] Pournamdari M, Hashim M, Pour A B . Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex,south Iran[J]. Advances in Space Research, 2014,54(4):694-709.
doi: 10.1016/j.asr.2014.04.022
[14] 别小娟, 张廷斌, 孙传敏 , 等. 藏东罗布莎蛇绿岩遥感岩矿信息提取方法研究[J]. 国土资源遥感, 2013,25(3):72-78.doi: 10.6046/gtzyyg.2013.03.13.
doi: 10.6046/gtzyyg.2013.03.13
Bie X J, Zhang T B, Sun C M , et al. Study of methods for extraction of remote sensing information of rocks and altered minerals from Luobusha ophiolite in East Tibet[J]. Remote Sensing for Land and Resources, 2013,25(3):72-78.doi: 10.6046/gtzyyg.2013.03.13.
[15] Cui J, Yan B K, Wang R S , et al. Regional-scale mineral mapping using ASTER VNIR/SWIR data and validation of reflectance and mineral map products using airborne hyperspectral CASI/SASI data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,33:127-141.
doi: 10.1016/j.jag.2014.04.014
[16] Di Tommaso I, Rubinstein N . Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina[J]. Ore Geology Reviews, 2007,32(1/2):275-290.
doi: 10.1016/j.oregeorev.2006.05.004
[17] Rowan L C, Mars J C . Lithologic mapping in the Mountain Pass,California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) data[J]. Remote Sensing of Environment, 2003,84(3):350-366.
doi: 10.1016/S0034-4257(02)00127-X
[18] Abbaszadeh M, Hezarkhani A . Enhancement of hydrothermal alteration zones using the spectral feature fitting method in Rabor Area,Kerman,Iran[J]. Arabian Journal of Geosciences, 2013,6(6):1957-1964.
doi: 10.1007/s12517-011-0495-0
[19] 闫柏琨, 刘圣伟, 王润生 , 等. 热红外遥感定量反演地表岩石的SiO2含量[J]. 地质通报, 2006,25(5):639-643.
Yan B K, Liu S W, Wang R S , et al. Quantitative inversion of the SiO2 content in surface rocks using thermal infrared remote sensing[J]. Geological Bulletin of China, 2006,25(5):639-643.
[20] 张玉君, 曾朝铭, 陈薇 . ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J]. 国土资源遥感, 2003,15(2):44-49.doi: 10.6046/gtzyyg.2003.02.11.
doi: 10.3969/j.issn.1001-070X.2003.02.011
Zhang Y J, Zeng Z M, Chen W . The methods for extraction of alteration anomalies from the ETM+(TM) data and their application:Method selection and technological flow chart[J]. Remote Sensing for Land and Resources, 2003,15(2):44-49.doi: 10.6046/gtzyyg.2003.02.11.
[21] 张廷斌 . 斑岩铜矿遥感蚀变信息重现性与优选研究[D]. 成都:西南交通大学, 2013.
Zhang T B . On the repeatability and optimization of remote sensing mineralized alterations about the porphyry copper deposits:A case study of the typical porphyry copper deposits in Tibet[D]. Chengdu:Southwest Jiaotong University, 2013.
[22] Pour A B, Hashim M . Hydrothermal alteration mapping from Landsat-8 data,Sar Cheshmeh copper mining district,south-eastern Islamic Republic of Iran[J]. Journal of Taibah University for Science, 2015,9(2):155-166.
doi: 10.1016/j.jtusci.2014.11.008
[23] 唐楠, 王成, 唐菊兴 , 等. 基于主成分分析法的OLI数据蚀变信息提取——以西藏多龙铜金矿集区为例[J]. 矿床地质, 2014,33(s1):745-746.
Tang N, Wang C, Tang J X , et al. Alteration information extraction based on principal component analysis using OLI data:A case study of Doloong Cu-Au deposit,Tibet[J] Mineral Deposits, 2014,33(s1):745-746.
[24] 程洋, 童立强 . 基于背景多层次分离的遥感矿化蚀变信息提取模型及应用实例[J]. 遥感技术与应用, 2015,30(3):586-591.
doi: 10.11873/j.issn.1004-0323.2015.3.0586
Cheng Y, Tong L Q . The research on model of the alteration mineral mapping base on multi-level separate background and an application examples[J]. Remote Sensing Technology and Application, 2015,30(3):586-591.
[25] 刘峻杉, 胡滨, 何政伟 . 遥感技术在格咱岛弧地区斑岩铜矿勘查中的应用[J]. 物探化探计算技术, 2015,37(6):790-796.
Liu J S, Hu B, He Z W . The application of remote sensing technique for porphyry copper exploration in the Gezan arc region[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015,37(6):790-796.
[26] 侯增谦, 吕庆田, 王安建 , 等. 初论陆-陆碰撞与成矿作用——以青藏高原造山带为例[J]. 矿床地质, 2003,22(4):319-333.
doi: 10.3969/j.issn.0258-7106.2003.04.001
Hou Z Q, Lyu Q T, Wang A J , et al. Continental collision and related metallogeny:A case study of mineralization in Tibetan Orogen[J]. Mineral Deposits, 2003,22(4):319-333.
[27] 张金树 . 冈底斯成矿带东段三大斑岩型矿床地质特征及区域控岩控矿模型研究[D]. 成都:成都理工大学, 2012.
Zhang J S . Study on three porphyry-type deposits’geological features and regional structural ore-controlling model in Eastern Gandise Metallogenic Belt[D]. Chengdu:Chengdu University of Technology, 2012.
[28] 胡紫豪 . 西藏多龙斑岩型铜金矿预测工作区多元信息找矿预测[D]. 成都:成都理工大学, 2012.
Hu Z H . Multivariate information prospecting prediction of Duo-Long porphyry copper deposit forecasting area in Tibet[D]. Chengdu:Chengdu University of Technology, 2012.
[29] 孙振明 . 西藏班—怒成矿带西段多龙矿集区铜金成矿作用与成矿规律[D]. 长春:吉林大学, 2015.
Sun Z M . Copper-gold mineralization and metallogenic regularity of Duolong mineralization area in western Bangongco-Nujiang[D]. Changchun:Jilin University, 2015.
[30] Mars J C, Rowan L C . Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc,Iran,using advanced spaceborne thermal emission and reflection radiometer(ASTER) data and logical operator algorithms[J]. Geosphere, 2006,2(3):161-186.
doi: 10.1130/GES00044.1
[31] Bedini E . Mapping alteration minerals at Malmbjerg molybdenum deposit,central East Greenland,by Kohonen self-organizing maps and matched filter analysis of HyMap data[J]. International Journal of Remote Sensing, 2012,33(4):939-961.
doi: 10.1080/01431161.2010.542202
[32] Clark R N, Swayze G A, Wise R A , et al. USGS Digital Spectral Library Splib06a[R].[s.l.]:U.S. Geological Survey, 2007.
[33] Cudahy T J, Ramanaidou E R . Measurement of the hematite:Goethite ratio using field visible and near-infrared reflectance spectrometry in channel iron deposits,Western Australia[J]. Australian Journal of Earth Sciences, 1997,44(4):411-420.
doi: 10.1080/08120099708728322
[34] Molan Y E, Refahib D, Tarashti A H . Mineral mapping in the Maherabad area,eastern Iran,using the HyMap remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,27:117-127.
doi: 10.1016/j.jag.2013.09.014
[35] 张玉君 . Landsat8简介[J]. 国土资源遥感, 2013,25(1):176-177.
Zhang Y J . Introduction of Landsat8[J] Remote Sensing for Land and Resources[J], 2013,25(1):176-177.
[36] Kruse F A, Baugh W M, Perry S L . Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping[J]. Journal of Applied Remote Sensing, 2015,9(1):096044.
doi: 10.1117/1.JRS.9.096044
[37] Asadzadeh S, De Souza Filho C R .A review on spectral processing methods for geological remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,47:69-90.
doi: 10.1016/j.jag.2015.12.004
[38] Boardman J W, Kruse F A . Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(11):4138-4152.
doi: 10.1109/TGRS.2011.2161585
[39] 闫柏琨, 董新丰, 王喆 , 等. 航空高光谱遥感矿物信息提取技术及其应用进展——以中国西部成矿带调查为例[J]. 中国地质调查, 2016,3(4):55-62.
Yan B K, Dong X F, Wang Z , et al. Mineral information extraction technology by airborne hyperspectral remote sensing and its application progress:An example of mineralization belts of western China[J]. 2016,3(4):55-62.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发