Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 151-158    DOI: 10.6046/gtzyyg.2018.03.21
     本期目录 | 过刊浏览 | 高级检索 |
基于国产高分卫星数据的矿山环境变化检测
王立娟1,2,3, 靳晓2,3(), 贾虎军2,3, 唐尧2,3, 马国超2,3
1. 成都理工大学环境与土木工程学院,成都 610045
2. 四川省安全科学技术研究院,成都 610045
3. 重大危险源测控四川省重点实验室,成都 610045
Change detection for mine environment based on domestic high resolution satellite images
Lijuan WANG1,2,3, Xiao JIN2,3(), Hujun JIA2,3, Yao TANG2,3, Guochao MA2,3
1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610045, China
2. Sichuan Academy of Safety Science and Technology, Chengdu 610045, China
3. Key Laboratory of Measurement and Control of Major Hazard Sources in Sichuan Province, Chengdu 610045, China
全文: PDF(7885 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了提高矿山遥感监测的自动化程度,弥补传统监测方法的缺陷,以国产高分二号(GF-2)影像为数据源,根据矿山监测的目标,提取多源特征,构建一种自动化程度较高的面向对象的变化检测方法,用于矿山环境的动态监测。这种方法在利用变化向量分析法(change vector analysis, CVA)进行变化检测的基础上自动选择训练样本,然后利用极限学习机(extreme learning machine, ELM)提取变化信息。将该方法与其他常用的5种方法对比,实验结果表明: 该方法的检测精度高达98.73%,且自动化程度高,很适用于矿山环境的动态监测分析; 以四川省攀枝花市米易县的典型矿山和尾矿库为例,开展矿山及周边环境动态监测实验,准确地检测出了矿山及其周边区域所发生的变化,验证了该方法的可行性,也为矿山实施大规模遥感动态监测提供了范例。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王立娟
靳晓
贾虎军
唐尧
马国超
关键词 矿山监测变化检测高分二号卫星影像极限学习机    
Abstract

With the development of mine monitoring technology towards the quantification and automation, the traditional remote sensing technology based on visual interpretation is not suitable for mine monitoring. In order to improve the automation of mine remote sensing monitoring and make up for deficiencies in traditional monitoring methods, the authors constructed an object-based change detection method with high degree of automation for dynamic monitoring of mine and the surrounding environment based on GF-2 remote sensing images. The method automatically selected training samples based on change vector analysis (CVA) and extracted change information by using extreme learning machine (ELM). The experimental results show that the detection accuracy of this method is 98.73%, and it can be used in the dynamic monitoring and analysis of mine environment with highly automation. Taking the typical mine and tailings pond in Miyi County of Sichuan Province as examples, the authors carried out the dynamic monitoring of mines and the surrounding areas based on GF-2 remote sensing images. The changes of mine and its surroundings were accurately detected, which verifies the feasibility of the method and provides examples for large-scale remote sensing monitoring in mine.

Key wordsmine monitoring    change detection    GF-2 remote sensing images    extreme learning machine
收稿日期: 2017-03-09      出版日期: 2018-09-10
:  TP751.1  
基金资助:四川省安全科学技术研究院项目“基于高分辨率对地观测系统的非煤矿山重大危险源安全监测与综合评估”(87-Y40G06-9001-15/18)
通讯作者: 靳晓
作者简介: 王立娟(1983-),女,高级工程师,主要从事遥感地质和矿山安全等方面的研究。Email: 734739167@qq.com。
引用本文:   
王立娟, 靳晓, 贾虎军, 唐尧, 马国超. 基于国产高分卫星数据的矿山环境变化检测[J]. 国土资源遥感, 2018, 30(3): 151-158.
Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.21      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/151
Fig.1  面向对象的变化检测方法流程
Fig.2  实验区域2期影像
Fig.3  实验区域参考变化
Fig.4  实验区域特征影像
Fig.5  不同参数选择的训练样本得到错误检测像元的数量
方法 CVA CVA-
OB
diff-
pixel
diff-
OB
SVM-
OB
CVA-
ELM
总体精
度/%
95.26 94.43 94.94 96.31 98.50 98.73
Kappa系数 0.604 1 0.501 9 0.585 9 0.715 7 0.892 8 0.918 0
虚检率/% 2.28 1.24 9.15 7.78 3.35 5.89
漏检率/% 4.84 5.71 4.87 3.53 1.43 0.85
Tab.1  各种方法的变化检测精度
Fig.6  各种方法的变化检测结果
Fig.7  万年沟尾矿库及周边区域2个时期遥感影像
Fig.8  万年沟尾矿库及周边区域2015—2016年变化
Fig.9  威龙州排土场及周边区域2期遥感影像
Fig.10  威龙州排土场2015—2016变化
Fig.11  冰花兰采场及周边区域2期影像
Fig.12  冰花兰采场2015—2016年变化
[1] 张焜, 马世斌, 刘丽萍 . 基于SPOT5数据的盐湖矿产开发及矿山环境遥感监测[J]. 国土资源遥感, 2012,24(3):146-153.doi: 10.6046/gtzyyg.2012.03.26.
doi: 10.6046/gtzyyg.2012.03.26
Zhang K, Ma S B, Liu L P . Remote sensing monitoring of the mineral resources exploration and mining environment of the salt lake based on SPOT5 data[J]. Remote Sensing for Land and Resources, 2012,24(3):146-153.doi: 10.6046/gtzyyg.2012.03.26.
[2] Rogan J, Franklin J, Roberts D A . A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery[J]. Remote Sensing of Environment, 2002,80(1):143-156.
doi: 10.1016/S0034-4257(01)00296-6
[3] 路云阁, 刘采, 王姣 . 基于国产卫星数据的矿山遥感监测一体化解决方案——以西藏自治区为例[J]. 国土资源遥感, 2014,26(4):85-90.doi: 10.6046/gtzyyg.2014.04.14.
doi: 10.6046/gtzyyg.2014.04.14
Lu Y G, Liu C, Wang J . Integrated solutions for mine remote sensing monitoring based on domestic satellite images:A case study of Tibet[J]. Remote Sensing for Land and Resources, 2014,26(4):85-90.doi: 10.6046/gtzyyg.2014.04.14.
[4] 安志宏, 聂洪峰, 王昊 , 等. ZY-102 C星数据在矿山遥感监测中的应用研究与分析[J]. 国土资源遥感, 2015,27(2):174-182.doi: 10.6046/gtzyyg.2015.02.27.
doi: 10.6046/gtzyyg.2015.02.27
An Z H, Nie H F, Wang H , et al. Study and analysis of application of ZY-1 02C satellite data to remote sensing monitoring technology for exploration of mineral resources[J]. Remote Sensing for Land and Resources, 2015,27(2):174-182.doi: 10.6046/gtzyyg.2015.02.27.
[5] 魏江龙, 周颖智, 邵怀勇 , 等. 基于高分一号数据的矿山遥感监测——以会理多金属矿区为例[J]. 有色金属(矿山部分), 2016,68(4):86-91.
doi: 10.3969/j.issn.1671-4172.2016.04.020
Wei J L, Zhou Y Z, Shao H Y , et al. Remote sensing monitoring of mine based on data of GF-1 - in the case of Huili polymetallic mining area[J]. Nonferrous Metals (Mine Section), 2016,68(4):86-91.
[6] Roy M, Ghosh S, Ghosh A . A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system[J]. Information Sciences, 2014,269:35-47.
doi: 10.1016/j.ins.2014.01.037
[7] 常方正, 赵银娣, 刘善磊 . 遥感影像CVA变化检测的CUDA并行算法设计[J]. 遥感学报, 2016,20(1):114-128.
doi: 10.11834/jrs.20164311
Chang F Z, Zhao Y D, Liu S L . CUDA parallel algorithm for CVA change detection of remote sensing imagery[J]. Journal of Remote Sensing, 2016,20(1):114-128.
[8] 黄维, 黄进良, 王立辉 , 等. 基于PCA的变化向量分析法遥感影像变化检测[J]. 国土资源遥感, 2016,28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
doi: 10.6046/gtzyyg.2016.01.04
Huang W, Huang J L, Wang L H , et al. Remote sensing image change detection based on change vector analysis of PCA component[J]. Remote Sensing for Land and Resources, 2016,28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
[9] Wang R, Kwong S, Wang X Z , et al. Segment based decision tree induction with continuous valued attributes[J]. IEEE Transactions on Cybernetics, 2015,45(7):1262-1275.
doi: 10.1109/TCYB.2014.2348012 pmid: 25291806
[10] Tan K, Li E Z, Du Q , et al. An efficient semi-supervised classification approach for hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,97:36-45.
doi: 10.1016/j.isprsjprs.2014.08.003
[11] Tan K, Jin X, Plaza A , et al. Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(8):3439-3451.
doi: 10.1109/JSTARS.2016.2541678
[12] Li W, Chen C, Su H J , et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(7):3681-3693.
doi: 10.1109/TGRS.2014.2381602
[13] Samat A, Du P J, Liu S C , et al. E 2LMs:Ensemble extreme learning machines for hyperspectral image classification [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(4):1060-1069.
doi: 10.1109/JSTARS.4609443
[14] Hussain M, Chen D M, Cheng A , et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,80:91-106.
doi: 10.1016/j.isprsjprs.2013.03.006
[15] 张森, 陈健飞, 龚建周 . 面向对象分类的决策树方法探讨——以Landsat-8OLI为例[J]. 测绘科学, 2016,41(6):117-121,125.
Zhang S, Chen J F, Gong J Z . Object-oriented classification based on C5.0 algorithm[J]. Science of Surveying and Mapping, 2016,41(6):117-121,125.
[16] Huo C L, Zhou Z X, Lu H Q , et al. Fast object-level change detection for VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(1):118-122.
doi: 10.1109/LGRS.2009.2028438
[1] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[2] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[3] 杜懿, 王大洋, 王大刚. GPM卫星降水产品空间降尺度研究——以贵州省为例[J]. 自然资源遥感, 2021, 33(4): 111-120.
[4] 肖烨辉, 宋妮迪, 孟盼盼, 王培俊, 范胜龙. 模型集群分析策略联合ELM的土壤重金属Pb含量预测[J]. 自然资源遥感, 2021, 33(4): 143-152.
[5] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[6] 王译著, 黄亮, 陈朋弟, 李文国, 余晓娜. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3): 89-96.
[7] 徐锐, 余小于, 张驰, 杨瑨, 黄宇, 潘俊. 融合Unet网络和IR-MAD的建筑物变化检测方法[J]. 国土资源遥感, 2020, 32(4): 90-96.
[8] 刁明光, 刘文静, 李静, 刘芳, 王彦佐. 矿山遥感监测矢量成果数据动态变化检测方法[J]. 国土资源遥感, 2020, 32(3): 240-246.
[9] 李霄, 刘莹, 姚维岭, 杨金中, 李勇志, 汪洁. 基于ArcPy的违法矿山自动出图方法[J]. 国土资源遥感, 2020, 32(3): 247-251.
[10] 张春森, 吴蓉蓉, 李国君, 崔卫红, 冯晨轶. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19-25.
[11] 冯林艳, 谭炳香, 王晓慧, 陈新云, 曾伟生, 戚曌. 基于分布函数的对象级森林变化快速检测[J]. 国土资源遥感, 2020, 32(2): 73-80.
[12] 刘义志, 赖华荣, 张丁旺, 刘飞鹏, 蒋小蕾, 曹庆安. 多特征混合核SVM模型的遥感影像变化检测[J]. 国土资源遥感, 2019, 31(1): 16-21.
[13] 赵展, 夏旺, 闫利. 基于多源数据的土地利用变化检测[J]. 国土资源遥感, 2018, 30(4): 148-155.
[14] 刁明光, 刘芳, 谭专条, 薛涛, 王彦佐. 矿山遥感监测解译记录表自动生成方法研究与实现[J]. 国土资源遥感, 2018, 30(4): 212-217.
[15] 朱欣然, 吴波, 张强. 一种改进CVAPS的LUCC分类自动更新方法[J]. 国土资源遥感, 2018, 30(2): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发