Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (4): 28-32    DOI: 10.6046/gtzyyg.2018.04.05
     本期目录 | 过刊浏览 | 高级检索 |
基于微分变换的高光谱马尾松和杉木识别
徐念旭1,2,3, 田庆久1,2(), 申怀飞1,2, 徐凯健1,2
1. 南京大学国际地球系统科学研究所,南京 210023
2. 江苏省地理信息技术重点实验室,南京 210023
3. 江苏省地理信息资源开发与利用协同创新中心,南京 210023
Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation
Nianxu XU1,2,3, Qingjiu TIAN1,2(), Huaifei SHEN1,2, Kaijian XU1,2
1. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
全文: PDF(2483 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高光谱遥感能分辨出地物间微小反射光谱差异信息,可用于解决林种遥感分类光谱识别的难题。利用Hyperion高光谱遥感影像,结合地面实测林种样地,对安徽省黄山市五城镇林区的马尾松和杉木进行识别。通过对Hyperion影像进行一阶、二阶微分变换,优化组合487~559 nm和681~742 nm光谱范围中反射差异明显的波段,再结合支持向量机(support vector machine,SVM)模型进行林种间分类识别。基于Hyperion影像像元反射率及其一阶和二阶微分光谱的分类识别总体精度分别达到76.50%,81.42%和88.52%,对应Kappa系数分别为0.528 4,0.625 7和0.769 1。结果表明,基于二阶微分变换的高光谱数据,通过SVM模型,可有效提高马尾松和杉木的识别精度,为高光谱遥感针叶林种分类识别提供了一种技术途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐念旭
田庆久
申怀飞
徐凯健
关键词 高光谱Hyperion微分变换针叶林支持向量机    
Abstract

Hyperspectral remote sensing can distinguish small spectrum differences between ground objects, and is expected to solve the classification problem of tree species. In this paper, by using Hyperion hyperspectral image, combined with the ground measured samples, classification of Pinus massoniana and Cunninghamia lanceolata in Wucheng of Huangshan City was conducted. With the 1st and 2nd differential transformation of the image, spectral band combination of 487~559 nm and 681~742 nm differs significantly, and hence was chosen to conduct supervised classification using support vector machine. Classification accuracy of raw, 1st and 2nd differential transformation image reaches 76.50%, 81.42% and 88.52% with Kappa coefficient being 0.528 4, 0.625 7 and 0.769 1 respectively. The results show that 2nd differential transformation and band selection of hyperspectral data can improve the classification accuracy of Pinus massoniana and Cunninghamia lanceolata, thus providing a foundation for further study of classification of coniferous forest with hyperspectral remote sensing.

Key wordshyperspectral    Hyperion    differential transformation    coniferous forest    support vector machine
收稿日期: 2017-06-15      出版日期: 2018-12-07
:  TP79  
基金资助:国家重点研发计划项目“人工林资源监测关键技术研究”(2017YFD0600903);国家科技重大专项项目“高分辨率对地观测系统”共同资助(03-Y20A04-9001-15/16)
通讯作者: 田庆久
作者简介: 徐念旭(1992-),男,硕士研究生,主要从事高光谱遥感研究。Email: jsjhxnx@vip.qq.com
引用本文:   
徐念旭, 田庆久, 申怀飞, 徐凯健. 基于微分变换的高光谱马尾松和杉木识别[J]. 国土资源遥感, 2018, 30(4): 28-32.
Nianxu XU, Qingjiu TIAN, Huaifei SHEN, Kaijian XU. Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation. Remote Sensing for Land & Resources, 2018, 30(4): 28-32.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.04.05      或      https://www.gtzyyg.com/CN/Y2018/V30/I4/28
Fig.1  研究区Hyperion影像及部分实地观测针叶林样地
Fig.2  马尾松与杉木典型像元反射率光谱曲线
Fig.3  马尾松与杉木典型像元一阶、二阶微分光谱曲线
Fig.4  基于Hyperion影像马尾松和杉木分类结果
类别 杉木 马尾松 总计
原始反射率光谱 杉木 63 17 80
马尾松 26 77 103
总计 89 94 183
一阶微分光谱 杉木 61 6 67
马尾松 28 88 116
总计 89 94 183
二阶微分光谱 杉木 70 2 72
马尾松 19 92 111
总计 89 94 183
Tab.1  原始反射率、一阶微分和二阶微分光谱精度统计
类别 总体精度/% Kappa系数
原始反射率光谱 76.502 7 0.528 4
一阶微分光谱 81.420 8 0.625 7
二阶微分光谱 88.524 6 0.769 1
Tab.2  总体精度与Kappa系数统计
[1] Ballanti L, Blesius L, Hines E , et al. Tree species classification using hyperspectral imagery:A comparison of two classifiers[J]. Remote Sensing. 2016,8(6):445.
doi: 10.3390/rs8060445
[2] George R, Padalia H , Kushwaha S P S.Forest tree species discrimination in western Himalaya using EO-1 Hyperion[J]. International Journal of Applied Earth Observation and Geoinformation. 2014,28(1):140-149.
doi: 10.1016/j.jag.2013.11.011
[3] Asadzadeh S, Roberto D S F C . A review on spectral processing methods for geological remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation. 2016,47:69-90.
doi: 10.1016/j.jag.2015.12.004
[4] 王志辉, 丁丽霞 . 基于叶片高光谱特性分析的树种识别[J]. 光谱学与光谱分析, 2010,30(7):1825-1829.
Wang Z H, Ding L X . Tree species discrimination based on leaf-level hyperspectral characteristic analysis[J]. Spectroscopy and Spectral Analysis. 2010,30(7):1825-1829.
[5] Clark M L, Roberts D A, Clark D B . Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales[J]. Remote Sensing of Environment. 2005,96(3):375-398.
doi: 10.1016/j.rse.2005.03.009
[6] Peerbhay K Y, Mutanga O, Ismail R . Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal,South Africa[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2013,79(5):19-28.
doi: 10.1016/j.isprsjprs.2013.01.013
[7] Heinzel J, Koch B . Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation[J]. International Journal of Applied Earth Observation and Geoinformation. 2012,18(18):101-110.
doi: 10.1016/j.jag.2012.01.025
[8] Cho H, Lee K S . Comparison between hyperspectral and multispectral images for the classification of coniferous species[J]. Korean Journal of Remote Sensing. 2014,30(1):25-36.
doi: 10.7780/kjrs.2014.30.1.3
[9] 臧卓, 林辉, 孙华 , 等. 南方主要针叶树种高光谱数据降维分类研究[J] 中南林业科技大学学报, 2010,30(11):20-25.
doi: 10.3969/j.issn.1673-923X.2010.11.005
Zang Z, Lin H, Sun H , et al. Study on hyper-spectral dimension reduction and classification for main southern coniferous species[J]. Journal of Central South University of Forestry and Technology, 2010,30(11):20-25.
[10] Plaza A, Benediktsson J A, Boardman J W , et al. Recent advances in techniques for hyperspectral image processing[J]. Remote Sensing of Environment. 2009,113(1):S110-S122.
doi: 10.1016/j.rse.2007.07.028
[11] 丁晖, 方炎明, 杨新虎 , 等. 黄山亚热带常绿阔叶林的群落特征[J]. 生物多样性, 2016,24(8):875-887.
doi: 10.17520/biods.2016108
Ding H, Fang Y M, Yang X H , et al. Community characteristics of a subtropical evergreen broad-leaved forest in Huangshan,Anhui Province,East China[J]. Biodiversity Science. 2016,24(8):875-887.
[12] Puletti N, Camarretta N, Corona P . Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests[J]. European Journal of Remote Sensing. 2016,49(1):157-169.
doi: 10.5721/EuJRS20164909
[13] Scheffler D, Karrasch P. Preprocessing of hyperspectral images:A comparative study of destriping algorithms for EO1-Hyperion [C]//Proceedings of the International Society for Optical Engineering. 2013,8892(6):1504-1507.
[14] Kuusk A, Lang M, Nilson T . Simulation of the reflectance of ground vegetation in sub-boreal forests[J]. Agricultural and Forest Meteorology. 2004,126(1):33-46.
doi: 10.1016/j.agrformet.2004.05.004
[1] 赵晓伟, 黄杨, 汪永强, 储鼎. 基于无人机多光谱数据的玉米苗株估算[J]. 自然资源遥感, 2022, 34(1): 106-114.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[4] 陈洁, 张立福, 张琳珊, 张红明, 童庆禧. 紫外-可见光水质参数在线监测技术研究进展[J]. 自然资源遥感, 2021, 33(4): 1-9.
[5] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[6] 杜程, 李得林, 李根军, 杨雪松. 基于高原盐湖光谱特性下的溶解氧反演应用与探讨[J]. 自然资源遥感, 2021, 33(3): 246-252.
[7] 冯东东, 张志华, 石浩月. 基于多元数据的省会城市城中村精细提取[J]. 自然资源遥感, 2021, 33(3): 272-278.
[8] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[9] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[10] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[11] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[12] 李双权, 马玉凤, 刘勋, 李长春, 杜军. 郑州邙山枣树沟黄土剖面常量元素含量的高光谱反演[J]. 自然资源遥感, 2021, 33(3): 121-129.
[13] 舒慧勤, 方俊永, 鲁鹏, 顾万发, 王潇, 张晓红, 刘学, 丁兰坡. 基于多源高分辨率数据的遗址空间考古精细识别研究[J]. 国土资源遥感, 2021, 33(2): 162-171.
[14] 肖艳, 辛洪波, 王斌, 崔利, 姜琦刚. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测[J]. 国土资源遥感, 2021, 33(2): 33-39.
[15] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发