Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (4): 125-131    DOI: 10.6046/gtzyyg.2018.04.19
     本期目录 | 过刊浏览 | 高级检索 |
基于MODIS时序的陕西省植被物候时空变化特征分析
韩红珠1,2, 白建军1,2(), 张波3, 马高3
1. 陕西师范大学地理科学与旅游学院,西安 710062
2. 陕西师范大学地理学国家级实验教学示范中心,西安 710062
3. 中国空间技术研究院西安分院,西安 710000
Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series
Hongzhu HAN1,2, Jianjun BAI1,2(), Bo ZHANG3, Gao MA3
1. School of Geography and Tourism, Shaanxi Normal University, Xi’an 710062, China;
2. National Demonstration Center for Experimental Geography Education, Shaanxi Normal University, Xi’an 710062, China;
3. China Academy of Space Technology Xi’an , Xi’an 710000, China;
全文: PDF(6186 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感技术作为对大尺度陆表监测研究的有效手段,被广泛应用于自然地理环境各要素的研究中。其中,植被物候作为自然界规律性、周期性的事件,对自然环境尤其是气候变化有着重要的指示作用。以陕西省为研究区,采用Savitzky-Golay(S-G)滤波方法对MODIS归一化植被指数(normalized difference vegetation index,NDVI)数据进行时间序列重构,并在此基础上,提取陕西省2001—2016年间的植被物候期信息进行其时空变化特征分析。研究结果表明: ①陕西省的植被物候空间分布特征与其不同地形地貌的空间分布具有较好的一致性; ②陕西省生长季开始的平均时间在每年的第120天,生长季结束的平均时间在第280天,生长季长度平均为160 d; ③2001—2016年间陕西省植被生长季开始时间变化趋势为波动提前,变化率约为-0.79 d/a(R 2=0.40,P<0.01),生长季结束时间变化趋势表现为波动推迟,变化率约为0.50 d/a(R 2=0.25,P<0.05),生长季长度变化呈波动延长趋势,变化率约为1.29 d/a(R 2=0.37,P<0.05); ④在不同的物候期,陕西省植被的物候变化趋势空间分布差异较大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩红珠
白建军
张波
马高
关键词 NDVI物候时空变化陕西省    
Abstract

Remote sensing has been widely used in the study of natural geographical environment as an effective method to monitor the large-scale of surface. Among them, as a regular and periodic event in nature, vegetation phenology plays an important role in the natural environment, especially climate change. With Shaanxi Province as the study area and on the basis of the time series reconstruction of the MODIS NDVI data by using the Savitzky-Golay filtering method, the authors extracted and analyzed the vegetation phenology parameters of Shaanxi Province for the spatio-temporal changes from 2001 to 2016. The conclusions are as follows: ①The spatial distribution characteristics of vegetation phenology are in good agreement with the spatial distribution of different landforms in Shaanxi Province. ②The average start of season(SOS) was on the 120th day, the average end of season(EOS) was on the 280th day, and the average length of season(LOS) was 160 days; ③ From 2001 to 2016, the change of SOS was -0.79 d/a (R 2=0.4, P<0.01) , the EOS was 0.50 d/a (R 2=0.25, P<0.05), and the LOS was 1.29 d/a(R 2=0.37,P<0.05); ④ In the period of different phenological stages, the spatial distribution of phenological change trend of vegetation in Shaanxi Province is relatively large.

Key wordsNDVI    phenology    spatio-temporal variation    Shaanxi Province
收稿日期: 2017-06-12      出版日期: 2018-12-07
:  TP79  
基金资助:国家自然科学基金项目“基于格网的空间要素多层次关联与融合研究”(41171310);陕西省自然科学基础研究计划项目“土壤质地、作物类型及物候期对遥感干旱指数的影响——以陕西省为例”共同资助(2016MJ4016)
通讯作者: 白建军
作者简介: 韩红珠(1990-),女,博士研究生,主要从事植被遥感、农业干旱方面的研究。Email: lyl1524@qq.com
引用本文:   
韩红珠, 白建军, 张波, 马高. 基于MODIS时序的陕西省植被物候时空变化特征分析[J]. 国土资源遥感, 2018, 30(4): 125-131.
Hongzhu HAN, Jianjun BAI, Bo ZHANG, Gao MA. Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series. Remote Sensing for Land & Resources, 2018, 30(4): 125-131.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.04.19      或      https://www.gtzyyg.com/CN/Y2018/V30/I4/125
Fig.1  遥感植被物候2001—2016年间均值的空间分布特征
区域 物候期
SOS EOS LOS/d
毛乌素沙地陕北部分 127.3 292.5 165.2
黄土高原 134.2 289.6 155.4
关中平原 101.5 274.9 173.4
秦岭山地 113.4 270.2 156.8
汉江盆地 88.3 271.7 183.4
大巴山山地 109.5 267.1 157.6
Tab.1  2001—2016年间各区域物候期平均时间
Fig.2  2001—2016年间陕西省遥感植被物候年际变化趋势
Fig.3  2001—2016年间遥感植被物候变化趋势的空间分布特征
[1] 王连喜, 陈怀亮, 李琪 , 等. 植物物候与气候研究进展[J]. 生态学报, 2010,30(2):447-454.
Wang L X, Chen H L, Li Q , et al. Research advances in plant phenology and climate[J]. Acta Ecologica Sinica, 2010,30(2):447-454.
[2] 郑景云, 葛全胜, 郝志新 . 气候增暖对我国近40年植物物候变化的影响[J]. 科学通报, 2002,47(20):1582-1587.
Zheng J Y, Ge Q S, Hao Z X . Effect of climate warming on plant phenology change in China in last 40 years[J]. Chinese Science Bulletin, 2002,47(20):1582-1587.
[3] Jeong S J, Ho C H, Gim H J , et al. Phenology shifts at start vs.end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982—2008[J]. Global Change Biology, 2011,17(7):2385-2399.
doi: 10.1111/j.1365-2486.2011.02397.x
[4] 李荣平, 周广胜, 张慧玲 . 植物物候研究进展[J]. 应用生态学报, 2006,17(3):541-544.
Li R P, Zhou G S, Zhang H L . Research advances in plant phenology[J]. Chinese Journal of Applied Ecology, 2006,17(3):541-544.
[5] Zhang X Y, Friedl M A, Schaaf C B , et al. Monitoring vegetation phenology using MODIS[J]. Remote Sensing of Environment, 2003,84(3):471-475.
doi: 10.1016/S0034-4257(02)00135-9
[6] Piao S L, Fang J Y, Zhou L M , et al. Variations in satellite-derived phenology in China’s temperate vegetation[J]. Global Change Biology, 2006,12(4):672-685.
doi: 10.1111/gcb.2006.12.issue-4
[7] Chen X, Tan Z J, Schwartz M D , et al. Determining the growing season of land vegetation on the basis of plant phenology and satellite data in Northern China[J]. International Journal of Biometeorology, 2000,44(2):97-101.
doi: 10.1007/s004840000056
[8] Ding M J, Zhang Y L, Sun X M , et al. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009[J]. Chinese Science Bulletin, 2013,58(3):396-405.
doi: 10.1007/s11434-012-5407-5
[9] 侯学会, 牛铮, 高帅 , 等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测[J]. 农业工程学报, 2013,29(1):142-150,294.
doi: 10.3969/j.issn.1002-6819.2013.01.019
Hou X H, Niu Z, Gao S , et al. Monitoring vegetation phenology in farming-pastoral zone using SPOT-VGT NDVI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(1):142-150,294.
[10] 俎佳星, 杨健 . 东北地区植被物候时序变化[J]. 生态学报, 2016,36(7):2015-2023.
doi: 10.5846/stxb201409231884
Zu J X, Yang J . Temporal variation of vegetation phenology in northeastern China[J]. Acta Ecologica Sinica, 2016,36(7):2015-2023.
[11] 李正国, 杨鹏, 周清波 , 等. 基于时序植被指数的华北地区作物物候期/种植制度的时空格局特征[J]. 生态学报, 2009,29(11):6216-6226.
Li Z G, Yang P, Zhou Q B , et al. Research on spatiotemporal pattern of crop phenological characteristics and cropping system in North China based on NDVI time series data[J]. Acta Ecologica Sinica, 2009,29(11):6216-6226.
[12] 何月, 樊高峰, 张小伟 , 等. 近10年浙江植被物候的遥感监测及时空动态[J]. 中国农学通报, 2012,28(16):117-124.
He Y, Fan G F, Zhang X W , et al. Vegetation phenology monitoring and spatio-temporal dynamics in Zhejiang Province in past 10 years[J]. Chinese Agricultural Science Bulletin, 2012,28(16):117-124.
[13] 张晗, 任志远 . 多种时序NDVI重建方法比较与应用分析[J]. 中国农业科学, 2014,47(15):2998-3008.
doi: 10.3864/j.issn.0578-1752.2014.15.010
Zhang H, Ren Z Y . Comparison and application analysis of several NDVI time-series reconstruction methods[J]. Scientia Agricultura Sinica, 2014,47(15):2998-3008.
[14] 郑景云, 尹云鹤, 李炳元 . 中国气候区划新方案[J]. 地理学报, 2010,65(1):3-12.
doi: 10.11821/xb201001002
Zheng J Y, Yin Y H, Li B Y . A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010,65(1):3-12.
[15] 宋春桥, 柯灵红, 游松财 , 等. 基于TIMESAT的3种时序NDVI拟合方法比较研究——以藏北草地为例[J]. 遥感技术与应用, 2011,26(2):147-155.
Song C Q, Ke L H, You S C , et al. Comparison of three NDVI time-series fitting methods based on TIMESAT:Taking the grassland in northern Tibet as case[J]. Remote Sensing Technology and Application, 2011,26(2):147-155.
[16] Roerink G J, Menenti M, Verhoef W . Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 2000,21(9):1911-1917.
doi: 10.1080/014311600209814
[17] Chen J, Jönsson P, Tamura M , et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2004,91(3):332-344.
doi: 10.1016/j.rse.2004.03.014
[18] 蔡博峰, 于嵘 . 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009,13(6):1177-1186.
doi: 10.3321/j.issn:1007-4619.2009.06.014
Cai B F, Yu R . Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 2009,13(6):1177-1186.
[19] 辜智慧 . 中国农作物复种指数的遥感估算方法研究——基于SPOT/VGT多时相NDVI遥感数据[D]. 北京:北京师范大学, 2003.
Gu Z H . A Study of Calculating Multiple Cropping Index of Crop in China Using SPOT/VGT Multi-Temporal NDVI Data[D]. Beijing:Beijing Normal University, 2003.
[20] Zhou L M, Tucker C J, Kaufmann R K , et al. Variation in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research, 2001,106:20069-20083.
doi: 10.1029/2000JD000115
[21] Yu H Y, Luedeling E, Xu J C . Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(51):22151-22156.
doi: 10.1073/pnas.1012490107 pmid: 21115833
[22] Kafaki S B, Mataji A, Hashemi S A . Monitoring growing season length of deciduous broad leaf forest derived from satellite data in Iran[J]. American Journal of Environmental Sciences, 2009,5(5):647-652.
doi: 10.3844/ajessp.2009.647.652
[23] 王静璞, 刘连友, 贾凯 , 等. 毛乌素沙地植被物候时空变化特征及其影响因素[J]. 中国沙漠, 2015,35(3):624-631.
doi: 10.7522/j.issn.1000-694X.2015.00021
Wang J P, Liu L Y, Jia K , et al. Spatiotemporal variation of vegetation phenology and its affecting factors in the Mu Us Sandy Land[J]. Journal of Desert Research, 2015,35(3):624-631.
[24] 张少伟, 郭勇, 权红花 . 陕西省地理国(省)情监测中的基本地貌类型及划分指标[J]. 测绘标准化, 2012,28(4):13-16.
Zhang S W, Guo Y, Quan H H . Fundamental relief types and their classification index used in provincial geographic conditions monitoring in Shaanxi[J]. Standardization of Surveying and Mapping, 2012,28(4):13-16.
[25] 夏浩铭, 李爱农, 赵伟 , 等. 2001—2010年秦岭森林物候时空变化遥感监测[J]. 地理科学进展, 2015,34(10):1297-1305.
doi: 10.18306/dlkxjz.2015.10.010
Xia H M, Li A N, Zhao W , et al. Spatiotemporal variations of forest phenology in the Qinling zone based on remote sensing monitoring,2001—2010[J]. Progress in Geography, 2015,34(10):1297-1305.
[26] Myneni R B, Keeling C D, Tucker C J , et al. Increased plant growth in the north high latitudes from 1981 to 1991[J]. Nature, 1997,386(6626):698-702.
doi: 10.1038/386698a0
[27] Julien Y, Sobrino J A . Global land surface phenology trends from GIMMS database[J]. International Journal of Remote Sensing, 2009,30(13):3495-3513.
doi: 10.1080/01431160802562255
[28] 范德芹, 赵学胜, 朱文泉 , 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016,35(3):304-319.
doi: 10.18306/dlkxjz.2016.03.005
Fan D Q, Zhao X S, Zhu W Q , et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in Geography, 2016,35(3):304-319.
[1] 史飞飞, 高小红, 肖建设, 李宏达, 李润祥, 张昊. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1): 115-126.
[2] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[3] 范田亿, 张翔, 黄兵, 钱湛, 姜恒. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4): 209-218.
[4] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[5] 杨蕴雪, 张艳芳. 基于空间距离指数的延河流域生态敏感性时空演变特征[J]. 自然资源遥感, 2021, 33(3): 229-237.
[6] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[7] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
[8] 陈宝林, 张斌才, 吴静, 李纯斌, 常秀红. 历史平均值法用于MODIS影像像元云补偿——以甘肃省为例[J]. 国土资源遥感, 2021, 33(2): 85-92.
[9] 陈虹, 郭兆成, 贺鹏. 1988—2018年间洱海流域植被覆盖度时空变换特征探究[J]. 国土资源遥感, 2021, 33(2): 116-123.
[10] 潘梦, 曹云刚. 高亚洲地区冰湖遥感研究进展与展望[J]. 国土资源遥感, 2021, 33(1): 1-8.
[11] 王平, 毛克彪, 孟飞, 袁紫晋. 中国东海海表温度时空演化分析[J]. 国土资源遥感, 2020, 32(4): 227-235.
[12] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4): 145-153.
[13] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[14] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
[15] 宋国策, 张志. 内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法[J]. 国土资源遥感, 2020, 32(2): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发