Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (4): 171-175    DOI: 10.6046/gtzyyg.2018.04.25
     本期目录 | 过刊浏览 | 高级检索 |
基于HICO模拟数据的杭州湾水体悬浮物浓度遥感反演
禹定峰1,2,3, 周燕1,2,3, 马万栋4(), 盖志刚1,2,3, 刘恩晓1,2,3
1. 齐鲁工业大学(山东省科学院)山东省科学院海洋仪器仪表研究所,青岛 266001
2. 国家海洋监测设备工程技术研究中心,青岛 266001
3. 山东省科学院海洋光学重点实验室,青岛 266001
4. 生态环境部卫星环境应用中心,北京 100094
Retrieval of total suspended matter concentration in Hangzhou Bay based on simulated HICO from in situ hyperspectral data
Dingfeng YU1,2,3, Yan ZHOU1,2,3, Wandong MA4(), Zhigang GAI1,2,3, Enxiao LIU1,2,3
1. Institute of Oceanographic Instrumentation,Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266001, China
2. National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266001, China
3. Key Laboratory of Ocean Optics, Shandong Academy of Sciences, Qingdao 266001, China
4. Satellite Environment Center, Ministey of Ecology and Environment, Beijing 100094, China
全文: PDF(4559 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以杭州湾及其邻近海域为研究区,利用现场实测光谱模拟了近海高光谱成像仪(hyperspectral imager for the coastal ocean,HICO)波段,并在光谱特征分析的基础上确定特征波段,通过比较单波段、波段比值和反射峰面积等算法,建立了该海域悬浮物的遥感反演模型,并采用均方根误差和相对误差进行精度评价。研究结果表明,利用724.84 nm与461.36 nm波段光谱反射率比值建立的模型精度较高; 模型的决定系数为0.925 2,反演得到的悬浮物浓度与实测悬浮物浓度之间的均方根误差为14.09 mg/L,平均相对误差为5.2%。本研究对利用HICO模拟数据反演近海岸水体悬浮物具有一定的参考意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
禹定峰
周燕
马万栋
盖志刚
刘恩晓
关键词 HICO悬浮物遥感杭州湾    
Abstract

In this study, field data such as the concentration of total suspended matter (TSM) in Hangzhou Bay and its adjacent areas in Hangzhou’s coastal waters were observed, meanwhile, hyperspectral remote snesing data were measured with SVC GER1500 spectrometer during four cruises carried out on 20th, 22nd, 23rd and 24th July 2010. The coastal water-leaving refectance of HICO was simulated from in situ hyperspectral remote sensing spectra. The normalized peak area of remote sensing reflectance in the near-infrared region was applied to retrieving TSM after the spectra of simulated HICO were analyzed, as well as the application of single band model and band ratio model. The result indicated that the band ratio algorithm of Rrs(724.84)/Rrs(461.36) of HICO could be used to retrieve TSM in Hangzhou Bay. This study is helpful to retrieving TSM in coastal waters using HICO.

Key wordsHICO    total suspended matter    remote sensing    Hangzhou Bay
收稿日期: 2017-04-06      出版日期: 2018-12-07
:  X87  
基金资助:国家海洋公益性项目“海洋高光谱仪和机载激光测量系统产品化关键技术研究及应用示范”(201505031);山东省重点研发计划项目“国家海洋监测设备工程技术研究中心”(2016GGH4501);山东省自然科学基金项目“基于压缩感知的GNSS接收机捕获技术研究”(ZR2015YL020);山东省科学院青年基金项目“便携式水质高光谱仪关键技术研究”(2015QN028);青岛创业创新领军人才计划项目“海洋激光光电观测系统产业化关键技术研究”共同资助(13-CX-23)
通讯作者: 马万栋
作者简介: 禹定峰(1986-),男,副研究员,博士,主要从事水色遥感研究。Email: dfyucsas@163.com
引用本文:   
禹定峰, 周燕, 马万栋, 盖志刚, 刘恩晓. 基于HICO模拟数据的杭州湾水体悬浮物浓度遥感反演[J]. 国土资源遥感, 2018, 30(4): 171-175.
Dingfeng YU, Yan ZHOU, Wandong MA, Zhigang GAI, Enxiao LIU. Retrieval of total suspended matter concentration in Hangzhou Bay based on simulated HICO from in situ hyperspectral data. Remote Sensing for Land & Resources, 2018, 30(4): 171-175.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.04.25      或      https://www.gtzyyg.com/CN/Y2018/V30/I4/171
Fig.1  杭州湾采样站点位置
Fig.2  19个站点的实测悬浮物浓度
参数 性能
轨道 近圆形轨道
倾角/(°) 51.6
轨道高度/km 343
重返周期/d 3
视场角/(°) 6.92
幅宽/km 42
波谱范围/nm 360~1 080
波段数/个 128
光谱分辨率/nm 5.7
空间分辨率/m 100
信噪比 >200
偏振灵敏度/% <5(430~1 000 nm)
数据格式 BIL,BSQ,HDF5
Tab.1  HICO主要参数
Fig.3  19个站点的模拟HICO光谱反射率曲线
Fig.4  模拟HICO光谱反射率与悬浮物浓度之间的相关系数
Fig.5  不同光谱反射率与悬浮物浓度之间的关系
Fig.6  波段比值与悬浮物浓度之间的关系
Fig.7  实测悬浮物浓度与反演值对比
Fig.8  水体悬浮物在近红外波段的反射峰面积示意图
Fig.9  反射峰面积与悬浮物浓度的相关关系
[1] Gordon H R, Mccluney W R . Estimation of the depth of sunlight penetration in the sea for remote sensing[J]. Applied Optics, 1975,14(2):413-416.
doi: 10.1364/AO.14.000413 pmid: 20134900
[2] 光洁, 韦玉春, 黄家柱 , 等. 分季节的太湖悬浮物遥感估测模型研究[J]. 湖泊科学, 2007,19(3):241-249.
doi: 10.3321/j.issn:1003-5427.2007.03.003
Guang J, Wei Y C, Huang J Z , et al. Seasonal suspended sediment models in Lake Taihu using remote sensing data[J]. Journal of Lake Science, 2007,19(3):241-249.
[3] Mao Z H, Chen J Y, Pan D L , et al. A regional remote sensing algorithm for total suspended matter in the East China Sea[J]. Remote Sensing of Environment, 2012,124:819-831.
doi: 10.1016/j.rse.2012.06.014
[4] He X Q, Bai Y, Pan D L , et al. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 2013,133:225-239.
doi: 10.1016/j.rse.2013.01.023
[5] Mao Z H, Chen J Y, Pan D L , et al. A regional remote sensing algorithm for total suspended matter in the East China Sea[J]. Remote Sensing of Environment, 2012,124:819-831.
doi: 10.1016/j.rse.2012.06.014
[6] Binding C E, Bowers D G, Mitchelson-Jacob E G . Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters;the impact of variable particle scattering properties[J]. Remote sensing of Environment, 2005,94(3):373-383.
doi: 10.1016/j.rse.2004.11.002
[7] Zhang M W, Tang J W, Dong Q , et al. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery[J]. Remote Sensing of Environment, 2010,114(2):392-403.
doi: 10.1016/j.rse.2009.09.016
[8] Ahn Y H, Moon J E, Gallegos S . Development of suspended particulate matter algorithms for ocean color remote sensing[J]. Korean Journal of Remote Sensing, 2001,17(4):285-295.
[9] 宋庆君, 马荣华, 唐军武 , 等. 秋季太湖悬浮物高光谱估算模型[J]. 湖泊科学, 2008,20(2):196-202.
Song Q J, Ma R H, Tang J W , et al. Models of estimated total suspend matter concentration base on hyper-spectrum in Lake Taihu,in autumn[J]. Journal of Lake Science, 2008,20(2):196-202.
[10] Ma W D, Xing Q G, Chen C Q , et al. Using the normalized peak area of remote sensing reflectance in the near-infrared region to estimate total suspended matter[J]. International Journal of Remote Sensing, 2011,32(22):7479-7486.
doi: 10.1080/01431161.2010.524673
[11] Gitelson A A, Gao B C, Li R R , et al. Estimation of chlorophyll-a concentration in productive turbid waters using a hyperspectral imager for the coastal ocean? The Azov Sea case study[J]. Environmental Research Letters, 2011,6(2):024023.
doi: 10.1088/1748-9326/6/2/024023
[12] Moses W J, Gitelson A A, Berdnikov S , et al. HICO-based NIR-red models for estimating chlorophyll-concentration in productive coastal waters[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(6):1111-1115.
doi: 10.1109/LGRS.2013.2287458
[13] Mishra D R, Schaeffer B A, Keith D . Performance evaluation of normalized difference chlorophyll index in northern Gulf of Mexico estuaries using the hyperspectral imager for the coastal ocean[J]. GIScience and Remote Sensing, 2014,51(2):175-198.
doi: 10.1080/15481603.2014.895581
[14] Braga F, Giardino C, Bassani C , et al. Assessing water quality in the northern Adriatic Sea from HICO TM data [J]. Remote Sensing Letters, 2013,4(10):1028-1037.
doi: 10.1080/2150704X.2013.830203
[15] Keith D J, Schaeffer B A, Lunetta R S , et al. Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor[J]. International Journal of Remote Sensing, 2014,35(9):2927-2962.
doi: 10.1080/01431161.2014.894663
[16] Garcia R A , Fearns P R C S,Mckinna L I W.Detecting trend and seasonal changes in bathymetry derived from HICO imagery:A case study of Shark Bay,Western Australia[J]. Remote Sensing of Environment, 2014,147:186-205.
doi: 10.1016/j.rse.2014.03.010
[17] Sathyendranath S . Remote Sensing of Ocean Colour in Coastal,and Other Optically-complex,Waters[R].Dartmouth:the International Ocean- Colour Coordinating Group, 2000.
[18] Smith R C, Baker K S . Optical properties of the clearest natural waters(200-800 nm)[J]. Applied Optics, 1981,20(2):177-184.
doi: 10.1364/AO.20.000177 pmid: 20309088
[19] Pope R M, Fry E S . Absorption spectrum (380-700 nm) of pure water.II.Integrating cavity measurements[J]. Applied Optics, 1997,36(33):8710-8723.
doi: 10.1364/AO.36.008710
[20] Koponen S, Pulliainen J, Kallio K , et al. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data[J]. Remote Sensing of Environment, 2002,79(1):51-59.
doi: 10.1016/S0034-4257(01)00238-3
[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1): 18-26.
[5] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[6] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[7] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[8] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[9] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[10] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[11] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[12] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[13] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[14] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[15] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发