Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 22-32    DOI: 10.6046/gtzyyg.2019.01.04
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
递归滤波与KNN的高光谱遥感图像分类方法
涂兵1,2,3, 张晓飞1,3, 张国云1,2,3, 王锦萍1,3, 周瑶1,3
1.湖南理工学院信息与通信工程学院,岳阳 414006
2.湖南理工学院复杂系统优化与控制湖南省普通高等学校重点实验室,岳阳 414006
3.湖南理工学院IIP创新实验室,岳阳 414006
Hyperspectral image classification via recursive filtering and KNN
Bing TU1,2,3, Xiaofei ZHANG1,3, Guoyun ZHANG1,2,3, Jinping WANG1,3, Yao ZHOU1,3
1.School of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006,China
2.Key Laboratory of Optimization and Control for Complex Systems of Hunan Province, Hunan Institute of Science and Technology, Yueyang 414006, China
3.Laboratory of Intelligent-Image Information Processing, Hunan Institute of Science and Technology, Yueyang 414006, China
全文: PDF(5611 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了有效去除高光谱图像中的噪声,强化空间结构,充分利用地物目标的空间上下文信息,提升高光谱图像的分类精度,提出一种基于递归滤波(recursive filtering,RF)和KNN(k-nearest neighbor)算法的高光谱图像分类方法。首先,利用主成分分析法对高光谱图像进行降维; 其次,通过RF算法对降维后的主成分图像进行滤波,以增强遥感图像的轮廓特征; 然后,采用KNN算法计算测试样本与不同类别训练样本的欧式距离,根据比较k个最小欧式距离的平均值得到测试样本所属类别; 最后,在2个典型的数据库上进行实验验证,并分析所提算法中不同参数对分类精度的影响。实验结果表明,RF算法可以有效地去除噪声点,强化图像轮廓,与其他高光谱图像分类方法相比,该方法在分类准确性方面表现突出。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂兵
张晓飞
张国云
王锦萍
周瑶
关键词 高光谱图像递归滤波KNN主成分分析欧式距离    
Abstract

In order to remove the noise in the hyperspectral image effectively, strengthen the spatial structure, make full use of the spatial context information of the object, and improve the classification accuracy of hyperspectral image, the authors put forward recursive filtering and k-nearest neighbor (KNN) method for hyperspectral image classification. The main steps are as follows: Firstly, the principal component analysis (PCA) is used to perform feature dimension reduction of hyperspectral images. Next, the recursive filtering is used to filter the principal component image. Then, the Euclidean distance between the test sample and the different training samples is calculated by the KNN algorithm. Finally, according to the comparison of average values of k minimum Euclidean distances, the classification of test samples is achieved. Experimental results are based on several real-world hyperspectral data sets, and the influence of different parameters on the classification accuracy is analyzed. Experimental results show that, with recursive filtering, the noise can be effectively removed, and the image outline can be strengthened. Compared with other hyperspectral image classification methods, the proposed method is outstanding in classification accuracy.

Key wordshyperspectral images    recursive filtering    k-nearest neighbor    principal component analysis    Euclidean distance
收稿日期: 2017-11-15      出版日期: 2019-03-15
:  TP79  
基金资助:国家自然科学基金项目“基于改进集合经验模态分解与稀疏表示的连续钻井液压力波信号处理与识别方法研究”(51704115);湖南省研究生科研创新项目“高光谱遥感图像深层空谱特征提取方法及洞庭湖水域动态监测研究”(CX2018B771);湖南省科技计划项目“复杂工业物流系统智能控制与优化”共同资助(2016TP1021)
作者简介: 涂 兵(1983-),男,副教授,主要从事高光谱遥感图像处理、机器视觉和模式识别研究。Email: tubing@hnist.edu.cn。
引用本文:   
涂兵, 张晓飞, 张国云, 王锦萍, 周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.04      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/22
Fig.1  Indian Pines区域实验数据
Fig.2  Salinas区域实验数据
Fig.3  RF参数对不同数据集分类精度的影响分析
Fig.4  最近邻数k对不同数据集分类精度的影响分析
Fig.5  维度对不同数据集分类精度的影响分析
Fig.6  不同算法在Indian Pines数据集的分类结果(10%训练样本)
Fig.7  不同算法在Indian Pines数据集的分类结果(1%训练样本)
指标 类别 训练样
本/个
测试样
本/个
SVM SRC JSRC EMP EPF IFRF LMLL RF-KNN
CA Alfalfa 10 36 79.31
(7.32)
61.58
(10.62)
94.44
(8.10)
94.44
(2.78)
97.86
(6.68)
99.73
(0.85)
94.44
(0.00)
94.44
(0.00)
Corn-N 143 1 285 78.49
(0.83)
53.06
(2.96)
93.81
(2.00)
87.77
(2.06)
95.95
(2.28)
97.55
(0.99)
94.75
(0.37)
98.49
(0.56)
Corn-M 83 747 80.74
(2.78)
50.33
(3.65)
91.51
(1.19)
92.74
(2.28)
96.00
(2.56)
98.59
(0.91)
73.76
(0.00)
98.69
(0.48)
Corn 34 203 67.72
(5.46)
37.56
(3.80)
91.74
(3.54)
85.73
(5.36)
92.21
(5.33)
97.62
(1.29)
98.59
(0.00)
99.70
(0.44)
Grass-M 48 435 90.28
(2.20)
83.77
(1.80)
92.37
(3.38)
92.00
(2.81)
99.00
(0.88)
98.96
(1.07)
95.86
(0.00)
97.33
(3.34)
Grass-T 23 707 89.28
(2.00)
91.39
(1.22)
93.55
(1.00)
97.63
(0.67)
95.15
(2.97)
99.05
(0.63)
100.00
(0.00)
96.94
(1.83)
Grass-P 15 13 83.04
(13.35)
82.00
(8.37)
100.00
(0.00)
94.44
(5.56)
97.24
(6.40)
91.43
(18.07)
100.00
(0.00)
100.00
(0.00)
Hay-W 28 450 97.47
(0.90)
93.30
(0.92)
99.02
(0.71)
99.91
(0.13)
99.99
(0.05)
100.00
(0.00)
100.00
(0.00)
100.00
(0.00)
Oats 15 5 46.35
(9.95)
55.00
(13.94)
62.00
(40.25)
100.00
(0.00)
100.00
(0.00)
81.82
(17.64)
100.00
(0.00)
100.00
(0.00)
Soybean-N 150 822 80.02
(2.17)
66.17
(3.90)
91.08
(1.93)
88.88
(0.78)
92.21
(4.48)
96.84
(1.35)
90.83
(0.00)
99.12
(0.89)
Soybean-M 246 2 209 80.84
(2.11)
70.16
(1.47)
97.08
(1.16)
95.38
(0.88)
91.71
(4.46)
98.07
(1.04)
91.67
(0.00)
99.29
(0.37)
Soybean-C 60 533 78.99
(3.24)
45.51
(2.62)
84.54
(4.64)
86.83
(2.37)
94.73
(3.60)
98.08
(1.07)
93.21
(0.34)
98.16
(0.98)
Wheat 21 184 93.80
(2.63)
91.74
(3.06)
86.20
(2.89)
99.24
(0.62)
100.00
(0.00)
97.60
(2.30)
99.46
(0.00)
99.02
(0.81)
Woods 127 1 138 91.96
(1.49)
89.19
(1.51)
99.51
(0.26)
99.63
(0.26)
95.11
(2.86)
99.70
(0.35)
97.98
(0.00)
99.72
(0.40)
Buildings 35 351 73.95
(4.28)
35.45
(1.85)
92.08
(4.33)
97.32
(1.69)
95.27
(2.64)
97.38
(1.69)
94.87
(0.00)
98.46
(1.47)
Stone 37 56 93.97
(4.13)
89.88
(2.64)
94.29
(4.96)
98.57
(0.80)
96.40
(3.11)
95.98
(5.05)
94.64
(0.00)
99.64
(0.80)
OA 83.33
(0.77)
68.47
(0.59)
94.19
(0.57)
94.41
(0.84)
94.47
(1.80)
98.23
(0.18)
94.45
(0.78)
98.82
(0.29)
AA 81.64
(1.30)
68.51
(1.89)
91.45
(1.27)
94.41
(0.84)
96.18
(0.89)
96.79
(1.80)
95.69
(0.51)
98.65
(0.33)
Kappa 80.90
(0.90)
64.02
(0.63)
93.37
(0.65)
92.77
(0.49)
93.67
(2.07)
97.98
(0.21)
93.65
(0.90)
98.69
(0.29)
Tab.1  Indian Pines高光谱图像不同算法分类精度(10%训练样本)
指标 类别 训练样
本/个
测试样
本/个
SVM SRC JSRC EMP EPF IFRF LMLL RF-KNN
CA Alfalfa 3 43 72.25
(5.43)
63.26
(18.20)
92.56
(9.21)
87.44
(6.41)
72.42
(30.15)
88.35
(31.74)
95.35
(0.00)
95.35
(0.00)
Corn-N 14 1 414 47.63
(7.37)
40.07
(5.91)
69.99
(6.50)
57.39
(4.59)
61.20
(8.91)
83.17
(8.34)
69.12
(0.42)
83.97
(10.41)
Corn-M 8 822 55.60
(15.51)
31.33
(6.92)
55.28
(8.60)
63.64
(7.29)
73.96
(18.37)
71.08
(10.79)
44.09
(0.11)
74.67
(14.06)
Corn 3 234 35.98
(11.21)
25.37
(8.55)
45.04
(15.61)
29.79
(9.89)
59.62
(33.29)
70.28
(12.62)
33.42
(0.19)
92.22
(8.31)
Grass-M 6 477 74.25
(12.10)
63.59
(10.07)
70.23
(26.81)
77.04
(9.38)
90.54
(12.56)
85.61
(9.82)
69.18
(0.00)
89.48
(3.16)
Grass-T 7 723 76.13
(6.57)
77.25
(8.63)
85.48
(3.41)
86.07
(13.92)
74.85
(6.53)
90.66
(5.52)
98.76
(0.00)
97.10
(1.64)
Grass-P 3 25 30.57
(15.22)
89.04
(5.76)
92.00
(12.33)
90.80
(9.25)
81.41
(30.42)
52.28
(25.97)
96.00
(0.00)
100.00
(0.00)
Hay-W 5 473 93.09
(5.37)
73.82
(12.02)
84.90
(8.79)
94.82
(3.02)
98.42
(2.99)
100.00
(0.00)
99.79
(0.00)
100.00
(0.00)
Oats 3 17 18.99
(9.95)
68.35
(20.16)
94.12
(10.19)
96.47
(7.44)
48.01
(37.62)
27.79
(20.58)
100.00
(0.00)
96.47
(7.89)
Soybean-N 10 962 53.88
(7.46)
49.04
(8.64)
71.10
(5.46)
69.27
(9.05)
70.51
(15.60)
72.87
(10.46)
73.80
(2.79)
84.30
(4.51)
Soybean-M 24 2 431 59.35
(4.18)
61.04
(4.71)
82.59
(5.06)
77.10
(6.22)
66.08
(9.18)
85.91
(4.45)
79.66
(0.13)
93.58
(4.15)
Soybean-C 6 587 38.95
(8.03)
21.85
(6.44)
48.07
(8.57)
39.93
(7.11)
56.11
(22.14)
70.91
(12.35)
55.54
(0.76)
80.20
(9.34)
Wheat 2 203 84.36
(4.03)
77.38
(11.01)
79.61
(12.27)
95.81
(1.89)
96.16
(3.87)
80.46
(12.73)
99.31
(0.44)
96.75
(2.38)
Woods 13 1 252 84.44
(2.87)
80.95
(6.80)
92.54
(7.27)
87.61
(5.30)
87.10
(5.07)
92.88
(1.76)
97.78
(0.04)
92,99
(6.50)
Buildings 4 382 42.01
(10.72)
19.04
(5.30)
36.70
(7.27)
61.52
(13.30)
67.86
(24.93)
80.08
(9.07)
20.37
(0.79)
83.66
(6.88)
Stone 3 90 96.89
(5.87)
87.00
(4.84)
96.89
(2.41)
71.44
(25.08)
93.81
(20.70)
97.97
(10.17)
74.89
(1.49)
98.67
(0.93)
OA 60.60
(2.00)
54.87
(1.63)
74.04
(1.37)
71.88
(2.25)
71.00
(2.97)
81.84
(2.88)
86.72
(5.32)
89.07
(1.17)
AA 57.46
(2.63)
58.02
(2.14)
74.82
(2.74)
74.13
(3.18)
74.88
(5.28)
78.14
(3.00)
84.91
(4.79)
87.57
(1.32)
Kappa 54.59
(2.16)
48.47
(1.86)
70.12
(1.52)
67.88
(2.52)
66.24
(3.70)
79.29
(3.28)
84.77
(6.11)
91.21
(0.84)
Tab.2  Indian Pines高光谱图像不同算法分类精度(1%训练样本)
Fig.8  不同算法在Salinas数据集的分类结果(2%训练样本)
Fig. 9  不同算法在Salinas数据集的分类结果(0.2%训练样本)
指标 类别 训练样
本/个
测试样
本/个
SVM SRC JSRC EMP EPF IFRF LMLL RF-KNN
CA Weeds_1 40 1 969 100.00
(0.00)
98.36
(0.65)
100.00
(0.00)
99.80
(0.00)
100.00
(0.00)
100.00
(0.00)
100.00
(0.00)
100.00
(0.00)
Weeds_2 73 3 653 97.19
(0.53)
98.52
(0.45)
99.41
(0.67)
99.56
(0.34)
100.00
(0.00)
99.99
(0.02)
100.00
(0.00)
99.86
(0.13)
Fallow 38 1 938 94.60
(1.45)
96.76
(1.21)
99.16
(0.77)
99.54
(0.27)
94.84
(1.61)
99.88
(0.08)
99.69
(0.15)
100.00
(0.00)
Fallow_P 26 1 368 97.63
(1.11)
99.26
(0.33)
88.67
(5.45)
98.30
(1.20)
98.02
(0.56)
97.84
(0.92)
98.26
(2.88)
97.35
(2.34)
Fallow_S 52 2 626 98.55
(0.54)
94.39
(0.68)
84.03
(2.06)
96.77
(0.46)
99.94
(0.05)
99.47
(0.98)
99.06
(0.28)
98.64
(0.89)
Stubble 79 3 880 99.97
(0.05)
99.69
(0.10)
98.20
(1.33)
99.60
(0.38)
99.98
(0.02)
100.00
(0.00)
100.00
(0.00)
99.76
(0.18)
Celery 70 3 509 99.40
(0.31)
99.27
(0.14)
95.10
(2.08)
99.58
(0.09)
99.84
(0.17)
99.81
(0.11)
99.94
(0.00)
99.93
(0.05)
Graps 225 11 046 74.60
(1.74)
73.62
(1.49)
98.47
(0.23)
96.38
(0.91)
84.10
(4.04)
99.64
(0.14)
92.72
(0.06)
99.87
(0.19)
Soil 124 6 079 99.62
(0.03)
97.89
(0.93)
99.99
(0.01)
99.84
(0.23)
99.18
(0.32)
99.92
(0.12)
100.00
(0.00)
100.00
(0.00)
Corn 21 3 257 79.07
(5.21)
78.13
(3.72)
89.60
(3.36)
93.38
(1.17)
99.21
(0.83)
99.64
(0.42)
89.72
(1.99)
98.66
(0.73)
Lettuce_4wk 21 1 047 86.93
(4.99)
96.58
(2.71)
88.83
(4.86)
96.85
(1.53)
96.97
(1.27)
99.20
(0.30)
95.52
(0.77)
97.06
(2.52)
Lettuce_5wk 38 1 889 97.96
(0.49)
99.72
(0.58)
94.55
(0.99)
99.52
(0.98)
99.46
(0.63)
98.82
(1.22)
100.00
(0.00)
99.68
(0.40)
Lettuce_6wk 18 898 98.47
(0.85)
97.34
(0.43)
83.78
(5.46)
98.57
(1.17)
98.58
(1.62)
99.01
(1.22)
97.16
(0.13)
91.76
(8.28)
Lettuce_7wk 20 1 050 86.93
(4.81)
92.69
(2.17)
79.62
(5.57)
96.13
(1.75)
98.71
(0.53)
98.16
(1.25)
97.52
(0.04)
98.84
(0.66)
Vinyard_U 140 7 128 66.51
(5.39)
61.41
(1.96)
97.39
(0.47)
94.23
(1.16)
91.82
(2.37)
99.88
(0.16)
68.43
(1.31)
99.01
(0.44)
Vinyard_T 36 1 771 96.88
(2.12)
95.57
(2.75)
99.64
(0.18)
99.31
(0.39)
99.75
(0.44)
99.97
(0.05)
97.33
(0.48)
100.00
(0.00)
OA 87.57
(1.08)
86.69
(0.54)
95.98
(0.53)
97.53
(0.20)
94.78
(1.23)
99.42
(0.10)
93.23
(0.19)
99.46
(0.12)
AA 92.14
(0.85)
92.45
(0.54)
93.53
(1.09)
97.96
(0.25)
97.53
(0.32)
99.15
(0.10)
95.95
(0.21)
99.29
(0.14)
Kappa 86.14
(1.19)
85.17
(0.61)
95.53
(0.59)
97.25
(0.22)
94.17
(1.38)
99.62
(0.11)
92.44
(0.21)
98.78
(0.54)
Tab.3  Salinas高光谱图像不同算法分类精度(2%训练样本)
指标 类别 训练样
本/个
测试样
本/个
SVM SRC JSRC EMP EPF IFRF LMLL RF-KNN
CA Weeds_1 4 2 005 99.97
(0.04)
96.22
(1.21)
100.00
(0.00)
95.22
(9.57)
100.00
(0.00)
95.83
(5.08)
99.56
(0.41)
94.54
(8.02)
Weeds_2 8 3 718 94.87
(5.09)
97.60
(1.88)
99.70
(0.32)
98.95
(0.47)
99.96
(0.08)
99.77
(0.49)
99.74
(0.13)
99.09
(3.72)
Fallow 4 1 972 86.58
(4.53)
81.85
(13.07)
92.11
(9.31)
75.79
(17.54)
88.15
(1.26)
98.00
(2.63)
99.62
(0.18)
100.00
(0.00)
Fallow_P 3 1 391 97.17
(0.48)
99.07
(0.49)
56.96
(18.30)
99.01
(0.53)
97.47
(0.62)
91.10
(8.78)
56.70
(2.61)
76.62
(8.58)
Fallow_S 5 2 673 97.94
(0.80)
90.47
(4.61)
79.07
(6.65)
94.52
(2.44)
93.95
(7.58)
98.54
(2.22)
99.13
(0.38)
93.52
(4.98)
Stubble 8 3 951 99.98
(0.06)
99.59
(0.10)
99.83
(0.14)
97.05
(2.45)
99.97
(0.04)
100.00
(0.00)
99.52
(0.21)
97.77
(1.28)
Celery 7 3 572 95.19
(3.65)
98.55
(1.62)
96.41
(1.60)
99.34
(0.21)
97.79
(3.06)
99.39
(0.69)
99.73
(0.09)
98.64
(1.49)
Graps 21 11 250 64.31
(4.69)
69.24
(5.61)
89.36
(2.82)
85.68
(7.31)
70.03
(7.78)
95.22
(5.66)
88.20
(1.35)
93.77
(4.58)
Soil 11 6 192 99.59
(0.03)
96.97
(0.59)
99.61
(0.67)
99.26
(0.64)
92.56
(10.95)
98.58
(3.35)
99.01
(1.16)
100.00
(0.00)
Corn 3 3 275 77.73
(8.42)
54.75
(20.40)
79.57
(1.88)
73.97
(16.68)
91.63
(4.47)
98.94
(0.70)
90.02
(3.62)
97.92
(1.69)
Lettuce_4wk 3 1 065 64.29
(6.73)
93.12
(3.49)
80.56
(9.38)
94.80
(1.60)
76.28
(28.19)
98.75
(0.40)
92.94
(0.75)
88.26
(5.87)
Lettuce_5wk 4 1 923 92.36
(3.56)
97.32
(3.13)
71.45
(13.17)
99.95
(0.12)
96.28
(6.13)
92.19
(3.75)
100.00
(0.00)
80.09
(14.87)
Lettuce_6wk 2 914 89.61
(10.32)
97.19
(1.66)
56.09
(13.08)
98.49
(0.44)
86.04
(8.46)
83.58
(16.15)
97.55
(0.65)
71.66
(19.57)
Lettuce_7wk 2 1 068 71.56
(18.02)
81.08
(4.11)
94.41
(1.47)
92.57
(3.86)
98.83
(0.77)
81.37
(17.11)
96.66
(1.97)
60.28
(22.83)
Vinyard_U 13 7 255 45.34
(4.69)
53.50
(6.93)
70.38
(8.04)
72.99
(8.62)
87.61
(10.47)
89.90
(6.73)
72.37
(2.60)
96.61
(1.49)
Vinyard_T 4 1 803 93.56
(10.78)
73.55
(11.52)
96.14
(4.08)
86.88
(8.76)
99.93
(0.09)
99.63
(1.17)
96.04
(5.00)
99.80
(0.45)
OA 79.33
(1.99)
81.14
(1.39)
87.44
(1.02)
89.32
(2.00)
86.23
(2.51)
94.40
(2.08)
91.48
(0.87)
94.93
(1.26)
AA 85.63
(1.86)
86.25
(1.21)
85.10
(0.88)
91.53
(1.38)
92.28
(1.89)
94.05
(1.98)
92.93
(0.91)
94.69
(1.40)
Kappa 77.14
(2.15)
78.97
(1.52)
85.99
(1.14)
88.08
(2.22)
84.55
(2.88)
94.18
(2.32)
90.50
(0.97)
94.41
(3.05)
Tab.4  Salinas高光谱图像不同算法分类精度(0.2%训练样本)
[1] 王跃明, 郎均慰, 王建宇 . 航天高光谱成像技术研究现状及展望[J]. 激光与光电子学进展, 2013,50(1):75-82.
doi: 10.3788/LOP50.010008
Wang Y M, Lang J W, Wang J Y . Status and prospect of space-borne hyperspectral imaging technology[J]. Laser and Optoelectronics Progress, 2013,50(1):75-82.
[2] Manolakis D, Shaw G . Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002,19(1):29-43.
doi: 10.1109/79.974724
[3] Bioucas-Dias J M, Plaza A, Camps-Valls G , et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013,1(2):6-36.
doi: 10.1109/MGRS.2013.2244672
[4] 李庆亭, 张连蓬, 杨锋杰 , 等. 高光谱遥感图像最大似然分类问题及解决方法[J]. 山东科技大学学报(自然科学版), 2005,24(3):61-64.
doi: 10.3969/j.issn.1672-3767.2005.03.017
Li Q T, Zhang L P, Yang F J , et al. The MLC’s problem in classification of hyperspectral RS image and its solving method[J]. Journal of Shandong University of Science (Natural Science Edition), 2005,24(3):61-64.
[5] Melgani F, Bruzzone L . Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(8):1778-1790.
doi: 10.1109/TGRS.2004.831865
[6] Fauvel M, Tarabalka Y, Benediktsson J A , et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE Transactions on Geoscience and Remote Sensing, 2013,101(3):652-675.
doi: 10.1109/JPROC.2012.2197589
[7] 王春瑶, 陈俊周, 李炜 . 超像素分割算法研究综述[J]. 计算机应用研究, 2014,31(1):6-12.
doi: 10.3969/j.issn.1001-3695.2014.01.002
Wang C Y, Chen J Z, Li W . Review on superpixel segmentation algorithms[J]. Application Research of Computers, 2014,31(1):6-12.
[8] 彭海涛, 柯长青 . 基于多层分割的面向对象遥感影像分类方法研究[J]. 遥感技术与应用, 2010,25(1):149-154.
Peng H T, Ke C Q . Study on object-oriented remote sensing image classification based on multi-levels segmentation[J]. Remote Sensing Technology and Application, 2010,25(1):149-154.
[9] Vincent L, Soille P . Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583-598.
doi: 10.1109/34.87344
[10] 王亚静, 王正勇, 滕奇志 , 等. 基于熵率超像素和区域合并的岩屑颗粒图像分割[J].计算机工程与设计, 2014(12):4223-4227.
doi: 10.3969/j.issn.1000-7024.2014.12.032
Wang Y J, Wang Z Y, Teng Q Z , et al. Image segmentation of cutting grains based on entropy rate superpixel and region merging[J].Computer Engineering and Design, 2014(12):4223-4227.
[11] 李旭超, 朱善安 . 图像分割中的马尔可夫随机场方法综述[J]. 中国图象图形学报, 2007,12(5):789-798.
doi: 10.3969/j.issn.1006-8961.2007.05.004
Li X C, Zhu S A . A survey of the Markov random field method for image segmentation[J]. Journal of Image and Graphics, 2007,12(5):789-798.
[12] Tarabalka Y Chanussot J, Benediktsson J A . Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers[J]. IEEE Transactions on Systems,Man,and Cybernetics.Part B,Cybernetics:A Publication of the IEEE Systems,Man,and Cybernetics Society, 2010,40(5):1267-1279.
doi: 10.1109/TSMCB.2009.2037132 pmid: 20051346
[13] 马秀丹, 吴子宾 . 一种优化的高光谱图像特征提取方法[J].河南科技, 2016(9):29-30.
doi: 10.3969/j.issn.1003-5168.2016.09.008
Ma X D, Wu Z B . An optimization feature extraction method of hyperspectral images[J].Journal of Henan Science and Technology, 2016(9):29-30.
[14] 朱勇, 吴波 . 多相似测度稀疏表示的高光谱影像分类[J]. 遥感信息, 2016,31(4):9-15.
doi: 10.3969/j.issn.1000-3177.2016.04.002
Zhu Y, Wu B . Sparse representation classification of hyperspectral image based on similarity indices[J]. Remote Sensing Information, 2016,31(4):9-15.
[15] 程志会, 谢福鼎 . 基于空间特征与纹理信息的高光谱图像半监督分类[J].测绘通报, 2016(12):56-59,73.
doi: 10.13474/j.cnki.11-2246.2016.0401
Cheng Z H, Xie F D . Semi-supervised classification for hyperspectral image based on spatial features and texture information[J].Bulletin of Surveying and Mapping, 2016(12):56-59,73.
[16] 张朝阳, 冯伍法, 张俊华 , 等. 基于形态学色差的彩色遥感影像水域提取[J]. 海洋测绘, 2006,26(5):58-60.
doi: 10.3969/j.issn.1671-3044.2006.05.018
Zhang Z Y, Feng W F, Zhang J H , et al. The waters feature extraction from the RS color image based on the morphological chromatic aberration[J]. Hydrographic Surveying and Charting, 2006,26(5):58-60.
[17] Camps-Valls G, Gomez-Chova L, Munoz-Mari J , et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(1):93-97.
doi: 10.1109/LGRS.2005.857031
[18] Zhang L F, Zhang L P, Tao D C , et al. On combining multiple features for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(3):879-893.
doi: 10.1109/tgrs.2011.2162339
[19] Kang X D, Li S T, Benediktsson J A . Feature extraction of hyperspectral images with image fusion and recursive filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(6):3742-3752.
doi: 10.1109/TGRS.2013.2275613
[20] Wang Z W, Yang J C, Nasrabadi N, et al. A max-margin perspective on sparse representation-based classification [C]//IEEE International Conference on Computer Vision.Sydney:IEEE, 2013: 1217-1224.
[21] Chen Y, Nasrabadi N M, Tran T D . Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(10):3973-3985.
doi: 10.1109/TGRS.2011.2129595
[22] Benediktsson J A, Palmason J A, Sveinsson J R . Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(3):480-491.
doi: 10.1109/TGRS.2004.842478
[23] Kang X D, Li S T, Benediktsson J A . Spectral-spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(5):2666-2677.
doi: 10.1109/TGRS.2013.2264508
[24] Li J ,Bioucas-Dias J M,Plaza A.Hyperspectral image segmentation using a new Bayesian approach with active learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(10):3947-3960.
doi: 10.1109/TGRS.2011.2128330
[1] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[2] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[3] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[4] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[5] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[6] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[7] 陈震, 夏学齐, 陈建平. 土地生态质量遥感评价模型与主控因子研究——以广安市为例[J]. 国土资源遥感, 2021, 33(1): 191-198.
[8] 木哈代思·艾日肯, 张飞, 刘康, 阿依努尔·玉山江. 基于天宫二号及Landsat8城镇生态环境现状评价[J]. 国土资源遥感, 2020, 32(4): 209-218.
[9] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[10] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[11] 曲海成, 郭月, 王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[12] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
[13] 刘万军, 李天慧, 曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
[14] 尹凌宇, 覃先林, 孙桂芬, 刘树超, 祖笑锋, 陈小中. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018, 30(1): 95-101.
[15] 张洪敏, 张艳芳, 田茂, 吴春玲. 基于主成分分析的生态变化遥感监测——以宝鸡市城区为例[J]. 国土资源遥感, 2018, 30(1): 203-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发