Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 101-109    DOI: 10.6046/gtzyyg.2019.01.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演
高晨, 徐健(), 高丹, 王莉莉, 王野乔
江西师范大学地理与环境学院/鄱阳湖湿地与流域研究教育部重点实验室,南昌 330022
Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake
Chen GAO, Jian XU(), Dan GAO, Lili WANG, Yeqiao WANG
School of Geography and Environment Science & Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, Jiangxi Normal University, Nanchang 330022, China
全文: PDF(5055 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

总悬浮物浓度是水质评价的重要参数之一。2015年8月,在鄱阳湖布设33个采样点,通过测量水面光谱和采集水样进行检测,获取水面遥感反射率、总悬浮物浓度和叶绿素a浓度等数据。结合实测水面遥感反射率数据与总悬浮物浓度的相关性分析,建立了单波段、一阶微分和波段比值3种反演模型,并分别进行了精度验证。研究发现,3种反演模型的拟合度(R 2)均大于0.9,其中单波段模型最优,其R 2、均方根误差(root mean square error,RMSE)及平均相对误差(mean relative percentage error,MRPE)分别为0.980 5,3.78 mg/L和16.99%。将该单波段模型应用于2015年8月3日的高分一号(GF-1)卫星影像数据,同样得到了较高的反演精度,R 2,RMSEMRPE分别为0.847 7,12.23 mg/L和35.22%。结果表明,鄱阳湖丰水期总悬浮物浓度值总体偏低,平均值为23.26 mg/L,高值主要集中在鄱阳湖北部通江河道及其以南的中部水域,其余水域分布较为均匀。利用2015年10月24日GF-1影像和准同步观测的21个采样点的总悬浮物浓度数据使用此模型做进一步验证,其反演精度接近于2015年8月影像验证结果,表明该模型能进一步推广应用到鄱阳湖不同时期总悬浮物浓度的反演。通过实测光谱的分析以及在遥感影像上的应用,可以为鄱阳湖总悬浮物浓度的反演以及环境监测提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高晨
徐健
高丹
王莉莉
王野乔
关键词 总悬浮物浓度反演方法高分一号实测水体光谱鄱阳湖    
Abstract

Total suspended matter is one of the important parameters to evaluate water quality. In this study, 33 data samples containing reflectance of water surface, concentration of total suspended matter and chlorophyll-a were used to conduct retrieval of total suspended matter, establish retrieval model and verify accuracy of model based on comparative analysis between field measured spectral reflectance and total suspended matter in Poyang Lake during the flood season. These models were single band, first-order differential and band ratio, respectively. The results showed that the R 2 of three models was greater than 0.9, and the best was the single band model, and R 2, RMSE and MRPE were 0.9805, 3.78mg/L and 16.99%, respectively. The single band model gave the better performance when it was applied to GF-1 satellite image data on August 3, 2015 and was validated, with R 2, RMSE and MRPE being 0.8477, 12.23mg/L and 35.22%, respectively. It was also shown that the overall level of suspended matter concentration was low and the average value was 23.26mg/L. The higher value of total suspended matter was concentrated in the northern channel area. The concentration values of suspended matter was distributed uniformly in other areas of Poyang Lake. This model was further applied to GF-1 satellite image data on October 24, 2015 and was validated using 21 data samples of total suspended matter concentration obtained on October 23 and October 24, 2015. The retrieval accuracy was close to the result of image on August 3, 2015. The results indicate that this model can be also applied to retrieving the total suspended matter concentration of other periods in Poyang Lake. By analysis of field measured spectral reflectance and application of remote sensing image data, this study can provide reference for the retrieval of total suspended matter and environment monitoring of Poyang Lake.

Key wordstotal suspended matter concentration    retrieval method    GF-1 satellite data    field measured water spectra    Poyang Lake
收稿日期: 2017-07-10      出版日期: 2019-03-15
:  TP79  
基金资助:国家自然科学基金项目“鄱阳湖浑浊水体溶解性有机碳遥感探测机理与反演方法研究”(41471298);江西省自然科学基金项目“鄱阳湖流域溶解有机碳的循环机理及其监测模型”(20133ACB20011);江西省重大生态安全问题监控协同创新中心项目“空间信息—智能传感综合技术平台”(JXS-EW-00);江西师范大学研究生创新基金项目“基于实测高光谱数据的城市湖泊水体有色可溶性有机物(CDOM)遥感反演——以南昌市瑶湖为例”共同资助(YJS2016023)
通讯作者: 徐健
作者简介: 高 晨(1992-),女,硕士研究生,主要从事水色遥感研究。Email: gaochen1214@sina.com。
引用本文:   
高晨, 徐健, 高丹, 王莉莉, 王野乔. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 国土资源遥感, 2019, 31(1): 101-109.
Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.14      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/101
Fig.1  鄱阳湖水域及其采样点
采样
时间
区域(采样
点个数)
水质参数 最小值 最大值 平均值
20150801 D(8) Chl-a/(mg·m-3) 3.63 9.70 6.16
TSM/(mg·L-1) 5.20 11.80 7.63
浊度/NTU 5.50 11.50 7.51
20150802 B(10) Chl-a/(mg·m-3) 1.06 12.99 7.03
TSM/(mg·L-1) 6.20 79.00 16.84
浊度/NTU 4.30 109.00 20.29
20150803 A(9) Chl-a/(mg·m-3) 0.65 5.42 3.06
TSM/(mg·L-1) 31.40 55.80 43.91
浊度/NTU 39.40 67.50 52.53
20150805 C(6) Chl-a/(mg·m-3) 3.84 20.54 5.91
TSM/(mg·L-1) 9.80 98.40 34.57
浊度/NTU 8.00 118.10 33.43
总(33) Chl-a/(mg·m-3) 0.65 20.54 5.55
TSM/(mg·L-1) 5.20 98.40 24.76
浊度/NTU 4.30 118.10 30.65
Tab.1  鄱阳湖采样点水质参数特征
Fig.2  鄱阳湖水体反射率光谱曲线
Fig.3  归一化遥感反射率与TSM浓度的相关系数
Fig.4  鄱阳湖水面实测遥感反射率光谱
反演方法 自变量 模型表达式 R2
单波段 R(707) y = 234 016x3-1 587.9x2+772.22x+2.520 5 0.980 5
一阶微分 R(777)-R(775)777-775 y = 2×1013x3-2×109x2+565 942x+4.188 0.968 1
波段比值 R(717)R(401) y = 8.616 6x3-47.114x2+127.39x-88.009 0.959 3
Tab.2  3种方法的TSM浓度反演模型
Fig.5  TSM浓度实测值与预测值对比
Fig.6  GF-1第3波段反射率与实测反射率对比
Fig.7  GF-1影像数据单波段模型反演TSM浓度的反演值与实测值对比(2015年8月)
Fig.8  2015年8月鄱阳湖TSM浓度空间分布
采样时间 区域(采样点个数) 最小值 最大值 平均值
20151023 A(10) 68.00 111.60 92.68
20151024 B(11) 1.60 84.40 29.22
总(21) 1.60 111.60 59.44
Tab.3  用于模型验证的21组TSM浓度数据
Fig.9  GF-1影像数据单波段模型反演TSM浓度的反演值与实测值对比(2015年10月)
[1] 马逸麟, 马逸琪 . 鄱阳湖湿地的保护与利用[J].国土与自然资源研究, 2003(4):66-67.
doi: 10.3969/j.issn.1003-7853.2003.04.031
Ma Y L, Ma Y Q . Protection and utilization of Poyang Lake Wetland[J].Territory and Natural Resources Study, 2003(4):66-67.
[2] de Leeuw J, Shankman D, Wu G , et al. Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake,China[J]. Regional Environmental Change, 2010,10(2):95-102.
doi: 10.1007/s10113-009-0096-6
[3] 李海军, 陈晓玲, 陆建忠 , 等. 考虑采砂影响的鄱阳湖丰水期悬浮泥沙浓度模拟[J]. 湖泊科学, 2016,28(2):421-431.
doi: 10.18307/2016.0223
Li H J, Chen X L, Lu J Z , et al. Numerical simulation of suspended sediment concentration in Lake Poyang during flood season considering dredging activities[J]. Journal of Lake Science, 2016,28(2):421-431.
[4] 汪小钦, 王钦敏, 邬群勇 , 等. 遥感在悬浮物质浓度提取中的应用——以福建闽江口为例[J]. 遥感学报, 2003,7(1):54-57.
doi: 10.3321/j.issn:1007-4619.2003.01.010
Wang X Q, Wang Q M, Wu Q Y , et al. Estimating suspended sediment concentration in coastal waters of Minjiang River using remote sensing images[J]. Journal of Remote Sensing, 2003,7(1):54-57.
[5] 王心源, 李文达, 严小华 . 基于Landsat TM/ETM+数据提取巢湖悬浮泥沙相对浓度的信息与空间分布变化[J]. 湖泊科学, 2007,19(3):255-260.
doi: 10.18307/2007.0305
Wang X Y, Li W D, Yan X H , et al. Information extraction for suspended sediment in Lake Chaohu and its distribution based on Landsat TM/ETM+ data[J]. Journal of Lake Science, 2007,19(3):255-260.
[6] 刘小丽, 沈芳, 朱伟健 , 等. MERIS卫星数据定量反演长江河口的悬沙浓度[J]. 长江流域资源与环境, 2009,18(11):1026-1031.
doi: 10.3969/j.issn.1004-8227.2009.11.006
Liu X L, Shen F, Zhu W J , et al. Quantitative retrieval for suspended sediment concentration by using MERIS satellite data in the Yangtze River Estuary[J]. Resources and Environment in the Yangtze Basin, 2009,18(11):1026-1031.
[7] Yu Q, Tian Y Q, Chen R F , et al. Functional linear analysis of in situ hyperspectral data for assessing CDOM in rivers[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(10):1147-1158.
doi: 10.14358/PERS.76.10.1147
[8] 宋庆君, 马荣华, 唐军武 , 等. 秋季太湖悬浮物高光谱估算模型[J]. 湖泊科学, 2008,20(2):196-202.
doi: 10.3321/j.issn:1003-5427.2008.02.010
Song Q J, Ma R H, Tang J W , et al. Models of estimated total suspend matter concentration base on hyper-spectrum in Lake Taihu,in autumn[J]. Journal of Lake Science, 2008,20(2):196-202.
[9] 陈建辉, 徐涵秋 . 晋江水体悬浮物浓度的高光谱建模分析[J]. 遥感技术与应用, 2008,23(6):653-657.
Chen J H, Xu H Q . Modeling of the suspended solid concentration of the Jin River based on high-spectral resolution data[J]. Remote Sensing Technology and Application, 2008,23(6):653-657.
[10] 孙德勇, 李云梅, 王桥 , 等. 基于实测高光谱的太湖水体悬浮物浓度遥感估算研究[J]. 红外与毫米波学报, 2009,28(2):124-128.
Sun D Y, Li Y M, Wang Q , et al. Study on remote sensing estimation of suspended matter concentrations based on in situ hyperspectral data in Lake Tai waters[J]. Journal of Infared and Millimeter Waves, 2009,28(2):124-128.
[11] 白照广 . 高分一号卫星的技术特点[J].中国航天, 2013(8):5-9.
Bai Z G . The technical features of GF-1 satellite[J].Erospace China, 2013(8):5-9.
[12] 刘茜 , David G. Rossiter.基于高光谱数据和MODIS影像的鄱阳湖悬浮泥沙浓度估算[J]. 遥感技术与应用, 2008,23(1):7-11.
Liu Q, David G . R.Estimation on suspended sedimentation concentration of Poyang Lake using MODIS and hyperspectral data[J]. Remote Sensing Technology and Application, 2008,23(1):7-11.
[13] 王艳姣, 张培群, 董文杰 , 等. 悬浮泥沙反射光谱特性和泥沙量估算试验研究[J].泥沙研究, 2007(5):36-41.
doi: 10.3321/j.issn:0468-155x.2007.05.006
Wang Y J, Zhang P Q, Dong W J , et al. Experimental study on reflected spectrum and estimating amount of suspended sediment[J].Journal of Sediment Research, 2007(5):36-41.
[14] 程乾, 刘波, 李婷 , 等. 基于高分1号杭州湾河口悬浮泥沙浓度遥感反演模型构建及应用[J]. 海洋环境科学, 2015,34(4):558-563.
Cheng Q, Liu B, Li T , et al. Research on remote sensing retrieval of suspended sediment concentration in Hangzhou Bay by GF-1 satellite[J]. Marine Environmental Science, 2015,34(4):558-563.
[15] Li J, Chen X, Tian L , et al. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters:Radiometric and spatial considerations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,106:145-156.
doi: 10.1016/j.isprsjprs.2015.05.009
[16] 侍昊, 沈文娟, 李杨 , 等. 高分系列卫星影像特征及其在太湖生态环境监测中的应用[J]. 南京林业大学学报(自然科学版), 2016,40(6):63-68.
doi: 10.3969/j.issn.1000-2006.2016.06.010
Shi H, Shen W J, Li Y , et al. Characteristics of GF images and application in eco-environmental monitoring in Taihu Lake[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016,40(6):63-68.
[17] 李四海, 恽才兴 . 河口表层悬浮泥沙气象卫星遥感定量模式研究[J]. 遥感学报, 2001,5(2):154-160.
doi: 10.3321/j.issn:1007-4619.2001.02.015
Li S H, Hui C X . A study on the quantitative model of the suspended sediment concentration from the meteorological satellite imagery[J]. Journal of Remote Sensing, 2001,5(2):154-160.
[18] 潘德炉, 马荣华 . 湖泊水质遥感的几个关键问题[J]. 湖泊科学, 2008,20(2):139-144.
doi: 10.18307/2008.0201
Pan D L, Ma R H . Several key problems of lake water quality remote sensing[J]. Journal of Lake Science, 2008,20(2):139-144.
[19] 唐军武, 田国良, 汪小勇 , 等. 水体光谱测量与分析I:水面以上测量法[J]. 遥感学报, 2004,8(1):37-44.
doi: 10.3321/j.issn:1007-4619.2004.01.006
Tang J W, Tian G L, Wang X Y , et al. The methods of water spectra measurement and analysis I:Above-water method[J]. Journal of Remote Sensing, 2004,8(1):37-44.
[20] 唐兆民, 何志刚, 韩玉梅 . 悬浮泥沙浓度的测量[J]. 中山大学学报(自然科学版), 2003,42(s2):244-247.
doi: 10.3321/j.issn:0529-6579.2003.z2.053
Tang Z M, He Z G, Han Y M , et al. The measurement on suspended sediment concentration[J]. Acta Scientiarum Natyralium Universitatis Sunyatseni, 2003,42(2):244-247.
[21] 陈宇炜, 陈开宁, 胡耀辉 . 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨[J]. 湖泊科学, 2006,18(5):550-552.
doi: 10.18307/2006.0519
Chen Y W, Chen K N, Hu Y H . Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method[J]. Journal of Lake Science, 2006,18(5):550-552.
[22] 郝建亭, 杨武年, 李玉霞 , 等. 基于FLAASH的多光谱影像大气校正应用研究[J].遥感应用, 2008(1):78-81.
doi: 10.3969/j.issn.1000-3177.2008.01.015
Hao J T, Yang W N, Li Y X , et al. Atmospheric correction of multi-spectral imagery ASTER[J].Application of Remote Sensing, 2008(1):78-81.
[23] 曾群, 赵越, 田礼乔 , 等. HJ-1A/1B卫星CCD影像水环境遥感大气校正方法评价研究——以鄱阳湖为例[J]. 光谱学与光谱分析, 2013,33(5):1320-1326.
Zeng Q, Zhao Y, Tian L Q , et al. Evaluation the atemospheric correction methods for water color remote sensing by using HJ-1A/1B CCD image-taking Poyang Lake in China as a case[J]. Spectroscopy and Spectral Analysis, 2013,33(5):1320-1326.
[24] 曾群, 张海东, 陈晓玲 , 等. MERIS影像水环境遥感大气校正算法评价——以鄱阳湖叶绿素a浓度反演为例[J]. 湖泊科学, 2016,28(6):1306-1315.
doi: 10.18307/2016.0616
Zeng Q, Zhang H D, Chen X L , et al. Evaluation on the atmospheric correction methods for water color remote SENSING by using MERIS image:A case study on chlorophyll-a concentration of Lake Poyang[J]. Journal of Lake Science, 2016,28(6):1306-1315.
[25] Rundquist D C, Han L, Schalles J F , et al. Remote measurement of algal chlorophyll in surface waters:The case for the first derivative of reflectance near 690 nm[J]. Photogrammetric Engineering and Remote Sensing, 1996,62(2):195-200.
doi: 10.1016/S0924-2716(96)90007-6
[26] Song K, Li L, Wang Z , et al. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources[J]. Environmental Monitoring and Assessment, 2012,184(3):1449-1470.
doi: 10.1007/s10661-011-2053-3 pmid: 21526431
[27] 陈晓玲, 吴忠宜, 田礼乔 , 等. 水体悬浮泥沙动态监测的遥感反演模型对比分析——以鄱阳湖为例[J]. 遥感监测研究专题, 2007,25(6):19-22.
doi: 10.3321/j.issn:1000-7857.2007.06.004
Chen X L, Wu Z Y, Tian L Q , et al. Inversion model for dynamic monitoring of suspended sediment:A case study on Poyang Lake[J]. Research on Remote Sensing Monitoring, 2007,25(6):19-22.
[28] 陈军, 周冠华, 温珍河 , 等. 太湖表层悬浮泥沙遥感定量模式研究[J]. 光谱学与光谱分析, 2010,30(1):137-141.
Chen J, Zhou G H, Wen Z H , et al. Study on quantitative model for suspended sediment concentration in Taihu Lake[J]. Spectroscopy and Spectral Analysis, 2010,30(1):137-141.
[29] Gao B C . NDWI:A normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment, 1996(58):257-266.
[30] 毕海芸, 王思远, 曾江源 , 等. 基于TM影像的几种常用水体提取方法的比较和分析[J]. 遥感信息, 2012,27(5):77-82.
doi: 10.3969/j.issn.1000-3177.2012.05.014
Bi H Y, Wang S Y, Zeng J Y , et al. Comparison and analysis of several common water extraction methods based on TM image[J]. Remote Sensing Information, 2012,27(5):77-82.
[31] 崔丽娟, 翟彦放, 邬国锋 . 鄱阳湖采砂南移扩大影响范围——多源遥感的证据[J]. 生态学报, 2013,33(11):3520-3525.
doi: 10.5846/stxb201203280426
Cui L J, Zhai Y F, Wu G F . Dredging being moved southward enlarges the impacted region in Poyang Lake:The evidences from multi-remote sensing images[J]. Acta Ecologica Sinica, 2013,33(11):3520-3525.
[32] 江丰, 齐述华, 廖富强 , 等. 2001—2010年鄱阳湖采砂规模及其水文泥沙效应[J]. 地理学报, 2015,70(5):837-845.
doi: 10.11821/dlxb201505014
Jiang F, Qi S H, Liao F Q , et al. Hydrological and sediment effects from sand mining in Poyang Lake during 2001—2010[J]. Acta Geographica Sinica, 2015,70(5):837-845.
[33] Binding C E, Bowers D G ,Mitchelson-Jacob E G.Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters:The impact of variable particle scattering properties[J]. Remote Sensing of Environment, 2005,94(3):373-383.
doi: 10.1016/j.rse.2004.11.002
[1] 栗旭升, 刘玉锋, 陈冬花, 刘赛赛, 李虎. 结合图像特征的支持向量机高分一号云检测[J]. 国土资源遥感, 2020, 32(3): 55-62.
[2] 张祝鸿, 王保云, 孙玉梅, 李才东, 孙显辰, 张玲莉. 结合笔画宽度变换与几何特征集的高分一号遥感图像河流提取[J]. 国土资源遥感, 2020, 32(2): 54-62.
[3] 彭继达, 张春桂. 基于高分一号遥感影像的植被覆盖遥感监测——以厦门市为例[J]. 国土资源遥感, 2019, 31(4): 137-142.
[4] 廖戬, 顾行发, 占玉林, 张雅洲, 任芯雨, 师帅一. 高分一号卫星影像谐波模型模拟方法研究[J]. 国土资源遥感, 2018, 30(3): 106-112.
[5] 王瑞军, 闫柏琨, 李名松, 董双发, 孙永彬, 汪冰. 甘肃红山地区重要控矿地质单元GF-1数据遥感解译与应用[J]. 国土资源遥感, 2018, 30(2): 162-170.
[6] 尹凌宇, 覃先林, 孙桂芬, 刘树超, 祖笑锋, 陈小中. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018, 30(1): 95-101.
[7] 陆坤, 孟庆岩, 孙云晓, 孙震辉, 张琳琳. 基于GF-2卫星数据的孕穗期小麦叶面积指数反演——以河北省廊坊市为例[J]. 国土资源遥感, 2018, 30(1): 196-202.
[8] 程洋, 唐建生, 苏春田, 杨杨, 罗飞. 高分一号数据在岩溶水文地质调查中的应用[J]. 国土资源遥感, 2017, 29(s1): 58-66.
[9] 张策, 揭文辉, 付丽华, 魏本赞. 新疆新源县滑坡灾害遥感影像特征及分布规律[J]. 国土资源遥感, 2017, 29(s1): 81-84.
[10] 薛庆, 吴蔚, 李名松, 董双发, 章新益, 石海港. 高分一号数据在矿山遥感监测中的应用[J]. 国土资源遥感, 2017, 29(s1): 67-72.
[11] 王瑞军, 董双发, 孙永彬, 李婧玥. 基于高分一号卫星数据新疆索拉克地区控矿地质单元遥感解译与应用[J]. 国土资源遥感, 2017, 29(s1): 137-143.
[12] 侯爱华, 高伟, 王中挺, 汪霖. 利用高分一号卫星监测开封地区PM2.5[J]. 国土资源遥感, 2017, 29(4): 161-165.
[13] 江威, 何国金, 刘慧婵, 龙腾飞, 王威, 郑守住, 马肖肖. 高分一号卫星WFV影像全国陆地镶嵌与制图技术研究[J]. 国土资源遥感, 2017, 29(4): 190-196.
[14] 李金香, 李志强, 李帅, 王伟, 陈勇. 高分辨率遥感影像居民地半自动提取方法研究[J]. 国土资源遥感, 2017, 29(3): 17-24.
[15] 张幼莹, 余江宽, 张丹丹, 林华暖. 国产卫星影像本底数据更新的实用方案——以地质灾害易发区遥感影像为例[J]. 国土资源遥感, 2017, 29(1): 149-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发