Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 195-203    DOI: 10.6046/gtzyyg.2019.01.26
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于雷达数据的区域土壤盐渍化监测
冯娟1,2, 丁建丽1,2(), 魏雯瑜1,2
1.新疆大学绿洲生态教育部重点实验室,乌鲁木齐 830046
2.吉木萨尔县气象局,昌吉 831700
Soil salinization monitoring based on Radar data
Juan FENG1,2, Jianli DING1,2(), Wenyu WEI1,2
1.Key Laboratory for Oasis Ecology, Xinjiang University, Urumqi 830046, China
2.Jimsar County Meteorological Bureau, Changji 831700, China
全文: PDF(11741 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以新疆渭库绿洲为研究区,对Radarsat-2全极化数据进行Freeman-Durden和H/α这2种目标极化分解处理,得到相应的特征参数,结合SVM-Wishart半监督分类方法对研究区土壤盐渍化信息进行提取,并利用目视判读和野外实地考察对分类结果进行分析验证。研究结果表明: ①应用不同极化分解得到的特征参数进行影像类型识别和参数特征空间构建,不同参数信息识别度不同,且参数之间特征空间分布不同,其中H/α分解后特征参数构成的特征空间存在明显规律; ②利用SVM-Wishart半监督分类方法对Freeman-Durden分解和H/α分解结果进行分类,Freeman-Durden分解后分类效果优于H/α分解分类效果,分类精度分别达88.00%和78.96%; ③SVM-Wishart半监督分类优于传统的SVM分类效果,可以较好地提取研究区土壤盐渍化信息。SVM-Wishart半监督分类可对极化非相干分解后得到的特征参数进行较充分的挖掘,并使分类结果得到一定程度的提高,在区域土壤盐渍化信息提取中具有优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯娟
丁建丽
魏雯瑜
关键词 土壤盐渍化极化分解Radarsat-2数据SVM-Wishart分类    
Abstract

With Weiku oasis in Xinjiang as the study area, the authors used two polarization methods, i.e., Freeman-Durden and H/α, to decompose and treat 4-polarization data of the Radarsat-2, got the corresponding characteristic parameters, extracted the salinization information of the study area combined with the SVM-Wishart semi-supervised classification method, and finally checked and analyzed the result of the classification with the visual interpretation and the field investigation. Some conclusions have been reached: ① When the impact categories are identified and the parameter feature space is built to get the characteristic parameters, different polarization decompositions yield different resolutions of parameter information, and the distributions of parameters characteristic space are different; after decomposing with H/α, the characteristic space constituted by characteristic parameters are different; ② The effect of using semi-supervised classification method to classify the endings of the Freeman Durden and H/α,Freeman Durden classification is superior to that of H/a; ③SVM-Wishart semi-supervised classification is superior to traditional SVM classification and hence it can be well used to extract the salinization information. SVM-Wishart semi-supervised classification can fully excavate the characteristic parameters after the coherent decomposition of polarization and can improve the classification accuracy, and it has certain advantages in the extraction of salinization information.

Key wordssoil salinization    polarization decomposition    Radarsat-2 data    SVM-Wishart classification
收稿日期: 2017-11-09      出版日期: 2019-03-14
:  TP79  
基金资助:国家自然科学基金项目"新疆绿洲水盐运移情景模拟数据同化研究"(U1303381);新疆自治区重点实验室专项基金项目"新疆绿洲区域浅层地下水盐变化与地表植被生态效应耦合研究"(2016D03001);新疆自治区科技支疆项目"新疆大尺度土壤盐渍化监测与预警网络系统平台研发"(201591101);教育部促进与美大地区科研合作与高层次人才培养项目
通讯作者: 丁建丽
作者简介: 冯 娟(1991-),女,硕士研究生,主要从事干旱区资源环境遥感研究。Email:891346210@qq.com
引用本文:   
冯娟, 丁建丽, 魏雯瑜. 基于雷达数据的区域土壤盐渍化监测[J]. 国土资源遥感, 2019, 31(1): 195-203.
Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.26      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/195
Fig.1  研究区示意图
参数类型 参数值
极化方式 HH,HV,VH,VV
获取方式 四极化精细
产品类型 SLC
信号中心频率/GHz 5.405
采样间隔/(m×m) 4.73×4.81
空间分辨率/m 8
行列号 2 792,6 139
近距远距入射角/(°) 28~30
测绘带/(km×km) 25×25
天线测试方向 左视,升轨
卫星高度/km 798
Tab.1  全极化Radarsat-2数据主要参数
类别 特征描述 训练样本点数量 验证样本点数量
样本点 像素数 样本点 像素数
水体 河流、水库、水渠和湖泊 56 5 963 55 5 835
农田 植被覆盖度大于30% 60 8 280 62 9 108
重度盐渍地 基本无植被,植被覆盖度约为05% 67 8 764 65 7 791
中轻度盐渍地 有盐生植被,植被覆盖度约为5%25% 52 1 482 53 1 570
裸地 戈壁和荒漠 64 10 499 63 10 286
  地物分类训练和验证样本数量
  Fig.2 flowchart of methodology
目标分解方法 极化参数 物理描述
H/α H,α,A 散射熵(entropy)、平均散射角、反熵(anisotropy)
λ1,λ2,λ3 相干矩阵特征值
Freeman-Durden Ps,Pd,Pv 单次散射、二次散射、体散射
fs,fd,fv Freeman-Durden分解系数
Tab.3  散射矩阵分解参数
Fig.3  极化分解参数
Fig.4  参数特征空间构建
Fig.5  H-α特征空间
Fig.6  SVM-Wishart分类结果
类别 H/α分解SVM-Wishart分类 Freeman-Durden分解SVM-Wishart分类 Freeman-Durden分解SVM分类
生产者精度/% 用户精度/% 生产者精度/% 用户精度/% 生产者精度/% 用户精度/%
水体 87.99 70.60 78.41 87.33 84.58 58.86
农田 95.57 99.22 99.62 99.72 83.57 83.37
重度盐渍地 77.24 56.86 92.41 71.28 58.42 54.17
中轻度盐渍地 87.59 66.85 97.18 72.45 58.27 65.76
裸地 65.25 83.23 87.89 78.60 86.87 84.85
总体精度/% 78.96 88.00 70.82
Kappa系数 0.71 0.83 0.62
Tab.4  土壤盐渍化信息监测分类信息验证
[1] 丁建丽, 姚远, 王飞 , 等. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014,34(16):4620-4631.
doi: 10.5846/stxb201212291895
Ding J L, Yao Y, Wang F , et al. Detecting soil salinization in arid regions using spectralfeature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014,34(16):4620-4631.
[2] Muyen Z, Moore G A, Wrigley R J . Soil salinity and sodicity effects of wastewater irrigation in South East Australia[J]. Agricultural Water Management, 2011,99(1):33-41.
doi: 10.1016/j.agwat.2011.07.021
[3] Wang H, Jia G . Satellite-based monitoring of decadal soil salinization and climate effects inasemi-arid region of China[J]. Advances in Atmospheric Sciences, 2012,29(5):1089-1099.
doi: 10.1007/s00376-012-1150-8
[4] 曹雷, 丁建丽, 于海洋 . 渭—库绿洲多尺度景观格局与盐度关系[J]. 农业工程学报, 2016,32(3):101-110.
doi: 10.11975/j.issn.1002-6819.2016.03.015
Cao L, Ding J L, Yu H Y . Relationship between multi-scale landscape pattern and salinity in Weigan and Kuqa Rivers Delta oasis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):101-110.
[5] Bouksila F, Bahri A, Berndtsson R , et al. Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia[J]. Environmental and Experimental Botany, 2013,92(5):176-185.
doi: 10.1016/j.envexpbot.2012.06.002
[6] 吕云海 . 于田绿洲典型区域土壤盐分空间分异规律研究[D]. 乌鲁木齐:新疆大学, 2009.
Lyu Y H . The Research for Spatial Distribution Rules of the Soil Salt of Typical Area in Yutian Oasis[D]. Urumqi:Xinjiang University, 2009.
[7] Farifteh J, Meer F V D, Atzberger Cs, et al. Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods(PLSR and ANN)[J]. Remote Sensing of Environment, 2007,110(1):59-78.
doi: 10.1016/j.rse.2007.02.005
[8] Wang H, Hsieh Y P, Harwell M A , et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions[J]. Ecological Modelling, 2007,201(3-4):429-439.
doi: 10.1016/j.ecolmodel.2006.10.013
[9] Lonnqvist A, Rauste Y, Molinier M , et al. Polarimetric SAR data in land cover mapping in Boreal Zone[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(10):3652-3662.
doi: 10.1109/TGRS.2010.2048115
[10] Nurmemet I, Ghulam A, Tiyip T , et al. Monitoring soil salinization in Keriya River Basin,Northwestern China using passive reflective and active microwave remote sensing data[J]. Remote Sensing, 2015,7(7):8803-8829.
doi: 10.3390/rs70708803
[11] Shi J, Chen K S, Li Q , et al. A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J]. Remote Sensing, 2010,40(12):2674-2686.
doi: 10.1109/TGRS.2002.807003
[12] Metternicht G I . Fuzzy classification of JERS-1 SAR data: An evaluation of its performance for soil salinity mapping[J]. Ecological Modelling, 1998,111(1):61-74.
doi: 10.1016/S0304-3800(98)00095-7
[13] Lhissou R, Chokmani K, El Harti A, et al. Soil salinity estimation using RADARSAT 2 polarimetric data in arid and sub-arid regions:Morocco and Tunisia cases[C]// EGU General Assembly Conference.Vienna:EGU, 2013.
[14] Li Y Y, Zhao K, Ding Y L, et al. An empirical method for soil salinity and moisture inversion in west of Jilin[C]// Proceedings of the International Conference on Remote Sensing Environment and Transportation Engineering(RSETE).Nanjing:AISR, 2013: 19-21.
[15] Deng L, Yan Y N, Wang C Z . Improved POLSAR image classification by the use of multi-feature combination[J]. Remote Sensing, 2015,7(4):4157-4177.
doi: 10.3390/rs70404157
[16] Qi Z X, Yeh G O, Li X , et al. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data[J]. Remote Sensing of Environment, 2012,118:21-39.
doi: 10.1016/j.rse.2011.11.001
[17] 丁建丽, 张飞, 江红南 , 等. 塔里木盆地北缘绿洲土壤含盐量和电导率空间变异性研究——以渭干河—库车河三角洲绿洲为例[J]. 干旱区地理, 2008,31(4):624-632.
Ding J L, Zhang F, Jiang H N , et al. Spatial variability of soil conductivity and salt content in the north Tarim Basin:A case study in the delta oasis of Weigen-Kuqa Rivers[J]. Arid Land Geography, 2008,31(4):624-632.
[18] 姚远, 丁建丽, 雷磊 , 等. 干湿季节下基于遥感和电磁感应技术的塔里木盆地北缘绿洲土壤盐分的空间变异性[J]. 生态学报, 2013,33(17):5308-5319.
doi: 10.5846/stxb201205230766
Yao Y, Ding J L, Lei L , et al. Monitoring spatial variability of soil salinity in dry and wet seasons in the North Tarim Basin using remote sensing and electromagnetic induction instruments[J]. Acta Ecologica Sinica, 2013,33(17):5308-5319.
[19] 丁建丽, 姚远, 王飞 . 基于三维光谱特征空间的干旱区土壤盐渍化遥感定量研究[J]. 土壤学报, 2013,50(5):853-861.
doi: 10.11766/trxb201212290535
Ding J L, Yao Y, Wang F . Quantitative remote sensing of soil salinization in arid regions based on three dimensional spectrum eigen spaces[J]. Acta Pedologica Sinica, 2013,50(5):853-861.
[20] Allbed A, Kumar L, Aldakheel Y Y . Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries:Applications in a date palm dominated region[J]. Geoderma, 2014, 230-231(7):1-8.
doi: 10.1016/j.geoderma.2014.03.025
[21] Cloude S R, Pottier E . An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(1):68-78.
doi: 10.1109/36.551935
[22] Lee J S, Grunes M R, Pottier E , et al. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(4):722-731.
doi: 10.1109/TGRS.2003.819883
[23] Lee J S, Grunes M R . Classification of multi-look polarimetric SAR data based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1992,15(11):2299-2311.
doi: 10.1080/01431169408954244
[1] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[2] 何连, 秦其明, 任华忠. 一种自适应的混合Freeman/Eigenvalue极化分解模型[J]. 国土资源遥感, 2017, 29(2): 8-14.
[3] 何海燕, 凌飞龙, 汪小钦, 梁志锋. 基于雷达植被指数的水土流失区植被覆盖度估测[J]. 国土资源遥感, 2015, 27(4): 165-170.
[4] 关红, 贾科利, 张至楠, 马欣. 盐渍化土壤光谱特征分析与建模[J]. 国土资源遥感, 2015, 27(2): 100-104.
[5] 王庆, 曾琪明, 廖静娟. 基于极化分解的极化特征参数提取与应用[J]. 国土资源遥感, 2012, 24(3): 103-110.
[6] 刘菊, 廖静娟, 沈国状. 基于全极化SAR数据反演鄱阳湖湿地植被生物量[J]. 国土资源遥感, 2012, 24(3): 38-43.
[7] 李晓明, 杨劲松, 余美, 杨奇勇, 刘梅先. 基于电磁感应的干旱区土壤盐渍化定量遥感研究[J]. 国土资源遥感, 2012, 24(1): 53-58.
[8] 戚浩平, 翁永玲, 赵福岳, 方洪宾. 茶卡-共和盆地土壤盐分与光谱特征研究[J]. 国土资源遥感, 2010, 22(s1): 4-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发